{"title":"新一代CRISPR基因编辑工具精准治疗阿尔茨海默病和帕金森病","authors":"Harsh Kumar Meshram , Sanjay Kumar Gupta , Akash Gupta , Kushagra Nagori , Ajazuddin","doi":"10.1016/j.arr.2025.102851","DOIUrl":null,"url":null,"abstract":"<div><div>Emerging gene-editing technologies, such as the CRISPR system, represent a potential pathway for precision medicine targeting the genetic and molecular causes of diseases. Second-generation CRISPR technologies, including base editing, prime editing, and engineered Cas variants, have improved fidelity and offer alternative strategies for precise gene correction, transcriptional repression or activation, and modulation of pathological pathways in neurodegeneration. These tools can correct single-nucleotide mutations, reduce pathological protein accumulation, and modulate neuroinflammatory responses, all integral to the pathogenesis of Alzheimer’s disease (AD) and Parkinson’s disease (PD), both chronic, progressive neurodegenerative disorders. Unfortunately, currently available treatments are limited and primarily palliative. Preclinical studies have shown promising results, with improvements in cognitive and motor deficits in animal models. However, significant challenges must be addressed to ensure safe and effective delivery to the CNS, minimize off-target effects, and address ethical concerns. Current clinical investigations aim to translate these findings into available therapeutic options. This review also identifies the biological mechanisms, therapeutic use cases, and current limitations of next-generation CRISPR systems as tools in the context of AD and PD, providing both therapeutic and research capabilities through their unique strengths. Ultimately, the future of transactional neurogenomics will determine the clinical possibilities of CRISPR-based strategies for advancing neurodegenerative disease management beyond palliative and symptomatic treatment, toward a feasible mechanistic form of disease modification.</div></div>","PeriodicalId":55545,"journal":{"name":"Ageing Research Reviews","volume":"111 ","pages":"Article 102851"},"PeriodicalIF":12.4000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Next-generation CRISPR gene editing tools in the precision treatment of Alzheimer’s and Parkinson’s disease\",\"authors\":\"Harsh Kumar Meshram , Sanjay Kumar Gupta , Akash Gupta , Kushagra Nagori , Ajazuddin\",\"doi\":\"10.1016/j.arr.2025.102851\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Emerging gene-editing technologies, such as the CRISPR system, represent a potential pathway for precision medicine targeting the genetic and molecular causes of diseases. Second-generation CRISPR technologies, including base editing, prime editing, and engineered Cas variants, have improved fidelity and offer alternative strategies for precise gene correction, transcriptional repression or activation, and modulation of pathological pathways in neurodegeneration. These tools can correct single-nucleotide mutations, reduce pathological protein accumulation, and modulate neuroinflammatory responses, all integral to the pathogenesis of Alzheimer’s disease (AD) and Parkinson’s disease (PD), both chronic, progressive neurodegenerative disorders. Unfortunately, currently available treatments are limited and primarily palliative. Preclinical studies have shown promising results, with improvements in cognitive and motor deficits in animal models. However, significant challenges must be addressed to ensure safe and effective delivery to the CNS, minimize off-target effects, and address ethical concerns. Current clinical investigations aim to translate these findings into available therapeutic options. This review also identifies the biological mechanisms, therapeutic use cases, and current limitations of next-generation CRISPR systems as tools in the context of AD and PD, providing both therapeutic and research capabilities through their unique strengths. Ultimately, the future of transactional neurogenomics will determine the clinical possibilities of CRISPR-based strategies for advancing neurodegenerative disease management beyond palliative and symptomatic treatment, toward a feasible mechanistic form of disease modification.</div></div>\",\"PeriodicalId\":55545,\"journal\":{\"name\":\"Ageing Research Reviews\",\"volume\":\"111 \",\"pages\":\"Article 102851\"},\"PeriodicalIF\":12.4000,\"publicationDate\":\"2025-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ageing Research Reviews\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1568163725001977\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ageing Research Reviews","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568163725001977","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Next-generation CRISPR gene editing tools in the precision treatment of Alzheimer’s and Parkinson’s disease
Emerging gene-editing technologies, such as the CRISPR system, represent a potential pathway for precision medicine targeting the genetic and molecular causes of diseases. Second-generation CRISPR technologies, including base editing, prime editing, and engineered Cas variants, have improved fidelity and offer alternative strategies for precise gene correction, transcriptional repression or activation, and modulation of pathological pathways in neurodegeneration. These tools can correct single-nucleotide mutations, reduce pathological protein accumulation, and modulate neuroinflammatory responses, all integral to the pathogenesis of Alzheimer’s disease (AD) and Parkinson’s disease (PD), both chronic, progressive neurodegenerative disorders. Unfortunately, currently available treatments are limited and primarily palliative. Preclinical studies have shown promising results, with improvements in cognitive and motor deficits in animal models. However, significant challenges must be addressed to ensure safe and effective delivery to the CNS, minimize off-target effects, and address ethical concerns. Current clinical investigations aim to translate these findings into available therapeutic options. This review also identifies the biological mechanisms, therapeutic use cases, and current limitations of next-generation CRISPR systems as tools in the context of AD and PD, providing both therapeutic and research capabilities through their unique strengths. Ultimately, the future of transactional neurogenomics will determine the clinical possibilities of CRISPR-based strategies for advancing neurodegenerative disease management beyond palliative and symptomatic treatment, toward a feasible mechanistic form of disease modification.
期刊介绍:
With the rise in average human life expectancy, the impact of ageing and age-related diseases on our society has become increasingly significant. Ageing research is now a focal point for numerous laboratories, encompassing leaders in genetics, molecular and cellular biology, biochemistry, and behavior. Ageing Research Reviews (ARR) serves as a cornerstone in this field, addressing emerging trends.
ARR aims to fill a substantial gap by providing critical reviews and viewpoints on evolving discoveries concerning the mechanisms of ageing and age-related diseases. The rapid progress in understanding the mechanisms controlling cellular proliferation, differentiation, and survival is unveiling new insights into the regulation of ageing. From telomerase to stem cells, and from energy to oxyradical metabolism, we are witnessing an exciting era in the multidisciplinary field of ageing research.
The journal explores the cellular and molecular foundations of interventions that extend lifespan, such as caloric restriction. It identifies the underpinnings of manipulations that extend lifespan, shedding light on novel approaches for preventing age-related diseases. ARR publishes articles on focused topics selected from the expansive field of ageing research, with a particular emphasis on the cellular and molecular mechanisms of the aging process. This includes age-related diseases like cancer, cardiovascular disease, diabetes, and neurodegenerative disorders. The journal also covers applications of basic ageing research to lifespan extension and disease prevention, offering a comprehensive platform for advancing our understanding of this critical field.