动态多尺度焦点学习框架在阿尔茨海默病分类中的应用。

IF 2.3 4区 医学 Q2 BIOCHEMICAL RESEARCH METHODS
Jikai Wang , Mingfeng Jiang , Wei Zhang , Yang Li , Tao Tan , Yaming Wang , Tie-qiang Li
{"title":"动态多尺度焦点学习框架在阿尔茨海默病分类中的应用。","authors":"Jikai Wang ,&nbsp;Mingfeng Jiang ,&nbsp;Wei Zhang ,&nbsp;Yang Li ,&nbsp;Tao Tan ,&nbsp;Yaming Wang ,&nbsp;Tie-qiang Li","doi":"10.1016/j.jneumeth.2025.110541","DOIUrl":null,"url":null,"abstract":"<div><h3>Background:</h3><div>Magnetic resonance imaging (MRI) of gray matter plays a crucial role in the diagnosis of Alzheimer’s disease (AD). Recent advances in multiscale learning techniques have improved AD classification by capturing structural information at multiple scales. However, effectively balancing the contributions of these multiscale features remains a significant challenge.</div></div><div><h3>New Method:</h3><div>To address this issue, we propose a Dynamic Multiscale Feature Learning Network (DMFLN) for AD classification. The framework incorporates a pyramid self-attention mechanism to capture high-level global contextual features and model long-range dependencies. Additionally, a residual wavelet transform is utilized to extract fine-grained local structural features. The DMFLN adaptively adjusts the weights of features across different scales, enabling a balanced fusion of global topological representations and local morphological details.</div></div><div><h3>Results:</h3><div>We evaluate our approach on T1-weighted MRI scans from the ADNI dataset. The proposed method achieves classification accuracies of 96.32% <span><math><mo>±</mo></math></span> 0.51%, 94.62% <span><math><mo>±</mo></math></span> 0.39%, and 93.07% <span><math><mo>±</mo></math></span> 0.81% for AD vs. NC, AD vs. MCI, and NC vs. MCI tasks, respectively.</div></div><div><h3>Comparison with existing methods:</h3><div>Compared to state-of-the-art approaches, the DMFLN framework offers improved performance by effectively addressing the challenge of multiscale feature weighting, which is often a bottleneck in multiscale fusion-based AD classification.</div></div><div><h3>Conclusions:</h3><div>The DMFLN framework demonstrates significant improvements in AD classification by adaptively integrating global and local structural information from gray matter. These results highlight the potential of dynamic multiscale feature learning in advancing neuroimaging-based AD diagnosis.</div></div>","PeriodicalId":16415,"journal":{"name":"Journal of Neuroscience Methods","volume":"423 ","pages":"Article 110541"},"PeriodicalIF":2.3000,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DMFLN: A dynamic multi-scale focus learning framework for Alzheimer’s disease classification\",\"authors\":\"Jikai Wang ,&nbsp;Mingfeng Jiang ,&nbsp;Wei Zhang ,&nbsp;Yang Li ,&nbsp;Tao Tan ,&nbsp;Yaming Wang ,&nbsp;Tie-qiang Li\",\"doi\":\"10.1016/j.jneumeth.2025.110541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background:</h3><div>Magnetic resonance imaging (MRI) of gray matter plays a crucial role in the diagnosis of Alzheimer’s disease (AD). Recent advances in multiscale learning techniques have improved AD classification by capturing structural information at multiple scales. However, effectively balancing the contributions of these multiscale features remains a significant challenge.</div></div><div><h3>New Method:</h3><div>To address this issue, we propose a Dynamic Multiscale Feature Learning Network (DMFLN) for AD classification. The framework incorporates a pyramid self-attention mechanism to capture high-level global contextual features and model long-range dependencies. Additionally, a residual wavelet transform is utilized to extract fine-grained local structural features. The DMFLN adaptively adjusts the weights of features across different scales, enabling a balanced fusion of global topological representations and local morphological details.</div></div><div><h3>Results:</h3><div>We evaluate our approach on T1-weighted MRI scans from the ADNI dataset. The proposed method achieves classification accuracies of 96.32% <span><math><mo>±</mo></math></span> 0.51%, 94.62% <span><math><mo>±</mo></math></span> 0.39%, and 93.07% <span><math><mo>±</mo></math></span> 0.81% for AD vs. NC, AD vs. MCI, and NC vs. MCI tasks, respectively.</div></div><div><h3>Comparison with existing methods:</h3><div>Compared to state-of-the-art approaches, the DMFLN framework offers improved performance by effectively addressing the challenge of multiscale feature weighting, which is often a bottleneck in multiscale fusion-based AD classification.</div></div><div><h3>Conclusions:</h3><div>The DMFLN framework demonstrates significant improvements in AD classification by adaptively integrating global and local structural information from gray matter. These results highlight the potential of dynamic multiscale feature learning in advancing neuroimaging-based AD diagnosis.</div></div>\",\"PeriodicalId\":16415,\"journal\":{\"name\":\"Journal of Neuroscience Methods\",\"volume\":\"423 \",\"pages\":\"Article 110541\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neuroscience Methods\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165027025001852\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience Methods","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165027025001852","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

背景:灰质磁共振成像(MRI)在阿尔茨海默病(AD)的诊断中起着至关重要的作用。近年来,多尺度学习技术通过在多尺度上捕获结构信息来改进AD分类。然而,有效地平衡这些多尺度特征的贡献仍然是一个重大的挑战。新方法:为了解决这个问题,我们提出了一种用于AD分类的动态多尺度特征学习网络(DMFLN)。该框架结合了一个金字塔自关注机制,以捕获高级全局上下文特征并为长期依赖关系建模。此外,利用残差小波变换提取细粒度局部结构特征。DMFLN自适应调整不同尺度特征的权重,实现全局拓扑表示和局部形态细节的平衡融合。结果:我们在来自ADNI数据集的t1加权MRI扫描上评估了我们的方法。该方法对AD与NC、AD与MCI、NC与MCI的分类准确率分别为96.32%±0.51%、94.62%±0.39%和93.07%±0.81%。与现有方法的比较:与最先进的方法相比,DMFLN框架通过有效解决多尺度特征加权的挑战,提高了性能,这通常是基于多尺度融合的AD分类的瓶颈。结论:DMFLN框架通过自适应地整合来自灰质的整体和局部结构信息,在AD分类方面显示出显著的改进。这些结果突出了动态多尺度特征学习在推进基于神经影像学的AD诊断中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DMFLN: A dynamic multi-scale focus learning framework for Alzheimer’s disease classification

Background:

Magnetic resonance imaging (MRI) of gray matter plays a crucial role in the diagnosis of Alzheimer’s disease (AD). Recent advances in multiscale learning techniques have improved AD classification by capturing structural information at multiple scales. However, effectively balancing the contributions of these multiscale features remains a significant challenge.

New Method:

To address this issue, we propose a Dynamic Multiscale Feature Learning Network (DMFLN) for AD classification. The framework incorporates a pyramid self-attention mechanism to capture high-level global contextual features and model long-range dependencies. Additionally, a residual wavelet transform is utilized to extract fine-grained local structural features. The DMFLN adaptively adjusts the weights of features across different scales, enabling a balanced fusion of global topological representations and local morphological details.

Results:

We evaluate our approach on T1-weighted MRI scans from the ADNI dataset. The proposed method achieves classification accuracies of 96.32% ± 0.51%, 94.62% ± 0.39%, and 93.07% ± 0.81% for AD vs. NC, AD vs. MCI, and NC vs. MCI tasks, respectively.

Comparison with existing methods:

Compared to state-of-the-art approaches, the DMFLN framework offers improved performance by effectively addressing the challenge of multiscale feature weighting, which is often a bottleneck in multiscale fusion-based AD classification.

Conclusions:

The DMFLN framework demonstrates significant improvements in AD classification by adaptively integrating global and local structural information from gray matter. These results highlight the potential of dynamic multiscale feature learning in advancing neuroimaging-based AD diagnosis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Neuroscience Methods
Journal of Neuroscience Methods 医学-神经科学
CiteScore
7.10
自引率
3.30%
发文量
226
审稿时长
52 days
期刊介绍: The Journal of Neuroscience Methods publishes papers that describe new methods that are specifically for neuroscience research conducted in invertebrates, vertebrates or in man. Major methodological improvements or important refinements of established neuroscience methods are also considered for publication. The Journal''s Scope includes all aspects of contemporary neuroscience research, including anatomical, behavioural, biochemical, cellular, computational, molecular, invasive and non-invasive imaging, optogenetic, and physiological research investigations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信