Haoyu Wang , Yanshen Yang , Xiaqing Zhou , Jin Tian , Xinci Duan , Ang Li , Tian Jian Lu , Xiaokang Li , Dandan Pei , Feng Xu
{"title":"用于生物医学应用的机械生物超材料的合理设计","authors":"Haoyu Wang , Yanshen Yang , Xiaqing Zhou , Jin Tian , Xinci Duan , Ang Li , Tian Jian Lu , Xiaokang Li , Dandan Pei , Feng Xu","doi":"10.1016/j.pmatsci.2025.101545","DOIUrl":null,"url":null,"abstract":"<div><div>Mechanical bio-metamaterials are an emerging class of engineered structures tailored to meet complex mechanical and biological demands in biomedical engineering. This review adopts a new perspective, moving beyond traditional formula-based approaches to explore design inspirations shaped by bioinspired, stimuli-responsive, and function-driven factors. We introduce a novel classification framework that organizes these metastructures from simple to complex and from static to dynamic, encompassing a broad range of structural designs. This structural-based classification emphasizes that it is the structure, rather than the material composition, that primarily defines the unique mechanical and biological properties of these materials. Furthermore, we discuss the transformative role of Artificial Intelligence in advancing the design of mechanical bio-metamaterials, facilitating forward and inverse design approaches, additive manufacturing, and predictive modeling. By establishing the term “mechanical bio-metamaterials,” this review connects structural design to biomedical applications in four key areas: engineered microenvironments, tissue implants, external devices, and invasive devices. This holistic approach aims to create accessible insights for a diverse audience, bridging engineering and clinical perspectives and illustrating how these metastructures influence cellular, tissue and organ behaviors. Finally, a roadmap outlines future directions, proposing evolutionary pathways for mechanical bio-metamaterials in healthcare. These innovations hold the potential to drive next-generation biomedical applications, offering improved patient outcomes and fostering creative advancements.</div></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"156 ","pages":"Article 101545"},"PeriodicalIF":40.0000,"publicationDate":"2025-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rational design of mechanical bio-metamaterials for biomedical applications\",\"authors\":\"Haoyu Wang , Yanshen Yang , Xiaqing Zhou , Jin Tian , Xinci Duan , Ang Li , Tian Jian Lu , Xiaokang Li , Dandan Pei , Feng Xu\",\"doi\":\"10.1016/j.pmatsci.2025.101545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Mechanical bio-metamaterials are an emerging class of engineered structures tailored to meet complex mechanical and biological demands in biomedical engineering. This review adopts a new perspective, moving beyond traditional formula-based approaches to explore design inspirations shaped by bioinspired, stimuli-responsive, and function-driven factors. We introduce a novel classification framework that organizes these metastructures from simple to complex and from static to dynamic, encompassing a broad range of structural designs. This structural-based classification emphasizes that it is the structure, rather than the material composition, that primarily defines the unique mechanical and biological properties of these materials. Furthermore, we discuss the transformative role of Artificial Intelligence in advancing the design of mechanical bio-metamaterials, facilitating forward and inverse design approaches, additive manufacturing, and predictive modeling. By establishing the term “mechanical bio-metamaterials,” this review connects structural design to biomedical applications in four key areas: engineered microenvironments, tissue implants, external devices, and invasive devices. This holistic approach aims to create accessible insights for a diverse audience, bridging engineering and clinical perspectives and illustrating how these metastructures influence cellular, tissue and organ behaviors. Finally, a roadmap outlines future directions, proposing evolutionary pathways for mechanical bio-metamaterials in healthcare. These innovations hold the potential to drive next-generation biomedical applications, offering improved patient outcomes and fostering creative advancements.</div></div>\",\"PeriodicalId\":411,\"journal\":{\"name\":\"Progress in Materials Science\",\"volume\":\"156 \",\"pages\":\"Article 101545\"},\"PeriodicalIF\":40.0000,\"publicationDate\":\"2025-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0079642525001239\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079642525001239","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Rational design of mechanical bio-metamaterials for biomedical applications
Mechanical bio-metamaterials are an emerging class of engineered structures tailored to meet complex mechanical and biological demands in biomedical engineering. This review adopts a new perspective, moving beyond traditional formula-based approaches to explore design inspirations shaped by bioinspired, stimuli-responsive, and function-driven factors. We introduce a novel classification framework that organizes these metastructures from simple to complex and from static to dynamic, encompassing a broad range of structural designs. This structural-based classification emphasizes that it is the structure, rather than the material composition, that primarily defines the unique mechanical and biological properties of these materials. Furthermore, we discuss the transformative role of Artificial Intelligence in advancing the design of mechanical bio-metamaterials, facilitating forward and inverse design approaches, additive manufacturing, and predictive modeling. By establishing the term “mechanical bio-metamaterials,” this review connects structural design to biomedical applications in four key areas: engineered microenvironments, tissue implants, external devices, and invasive devices. This holistic approach aims to create accessible insights for a diverse audience, bridging engineering and clinical perspectives and illustrating how these metastructures influence cellular, tissue and organ behaviors. Finally, a roadmap outlines future directions, proposing evolutionary pathways for mechanical bio-metamaterials in healthcare. These innovations hold the potential to drive next-generation biomedical applications, offering improved patient outcomes and fostering creative advancements.
期刊介绍:
Progress in Materials Science is a journal that publishes authoritative and critical reviews of recent advances in the science of materials. The focus of the journal is on the fundamental aspects of materials science, particularly those concerning microstructure and nanostructure and their relationship to properties. Emphasis is also placed on the thermodynamics, kinetics, mechanisms, and modeling of processes within materials, as well as the understanding of material properties in engineering and other applications.
The journal welcomes reviews from authors who are active leaders in the field of materials science and have a strong scientific track record. Materials of interest include metallic, ceramic, polymeric, biological, medical, and composite materials in all forms.
Manuscripts submitted to Progress in Materials Science are generally longer than those found in other research journals. While the focus is on invited reviews, interested authors may submit a proposal for consideration. Non-invited manuscripts are required to be preceded by the submission of a proposal. Authors publishing in Progress in Materials Science have the option to publish their research via subscription or open access. Open access publication requires the author or research funder to meet a publication fee (APC).
Abstracting and indexing services for Progress in Materials Science include Current Contents, Science Citation Index Expanded, Materials Science Citation Index, Chemical Abstracts, Engineering Index, INSPEC, and Scopus.