{"title":"用调幅法表示低频振动到面部。","authors":"Yuma Akiba;Shota Nakayama;Keigo Ushiyama;Izumi Mizoguchi;Hiroyuki Kajimoto","doi":"10.1109/TOH.2025.3594480","DOIUrl":null,"url":null,"abstract":"This study proposes a method to present pure low-frequency vibration sensations to the face that cannot be presented by small commercially available vibrators. The core innovation lies in utilizing an amplitude modulation technique with a carrier frequency of approximately 200 Hz. Due to the absence of Pacinian corpuscles in the facial region—receptors responsible for detecting high-frequency vibrations around 200 Hz—only the original low-frequency signal is perceived. Three experiments were conducted. Experiments 1 and 2 were performed on the forehead to confirm that the proposed amplitude modulation method could produce the desired low-frequency perception and to evaluate the subjective quality of the vibration. The results suggested that the proposed method could produce the perception of desired pure low-frequency vibration when applied to the forehead. In Experiment 3, the proposed method was applied to the whole face, and its range of applicability was explored. The results indicated that the original low-frequency vibration was clearly perceptible around the eyes, cheeks, and lower lip area.","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"18 3","pages":"710-721"},"PeriodicalIF":2.8000,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Presentation of Low-Frequency Vibration to the Face Using Amplitude Modulation\",\"authors\":\"Yuma Akiba;Shota Nakayama;Keigo Ushiyama;Izumi Mizoguchi;Hiroyuki Kajimoto\",\"doi\":\"10.1109/TOH.2025.3594480\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study proposes a method to present pure low-frequency vibration sensations to the face that cannot be presented by small commercially available vibrators. The core innovation lies in utilizing an amplitude modulation technique with a carrier frequency of approximately 200 Hz. Due to the absence of Pacinian corpuscles in the facial region—receptors responsible for detecting high-frequency vibrations around 200 Hz—only the original low-frequency signal is perceived. Three experiments were conducted. Experiments 1 and 2 were performed on the forehead to confirm that the proposed amplitude modulation method could produce the desired low-frequency perception and to evaluate the subjective quality of the vibration. The results suggested that the proposed method could produce the perception of desired pure low-frequency vibration when applied to the forehead. In Experiment 3, the proposed method was applied to the whole face, and its range of applicability was explored. The results indicated that the original low-frequency vibration was clearly perceptible around the eyes, cheeks, and lower lip area.\",\"PeriodicalId\":13215,\"journal\":{\"name\":\"IEEE Transactions on Haptics\",\"volume\":\"18 3\",\"pages\":\"710-721\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Haptics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11106219/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, CYBERNETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Haptics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11106219/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
Presentation of Low-Frequency Vibration to the Face Using Amplitude Modulation
This study proposes a method to present pure low-frequency vibration sensations to the face that cannot be presented by small commercially available vibrators. The core innovation lies in utilizing an amplitude modulation technique with a carrier frequency of approximately 200 Hz. Due to the absence of Pacinian corpuscles in the facial region—receptors responsible for detecting high-frequency vibrations around 200 Hz—only the original low-frequency signal is perceived. Three experiments were conducted. Experiments 1 and 2 were performed on the forehead to confirm that the proposed amplitude modulation method could produce the desired low-frequency perception and to evaluate the subjective quality of the vibration. The results suggested that the proposed method could produce the perception of desired pure low-frequency vibration when applied to the forehead. In Experiment 3, the proposed method was applied to the whole face, and its range of applicability was explored. The results indicated that the original low-frequency vibration was clearly perceptible around the eyes, cheeks, and lower lip area.
期刊介绍:
IEEE Transactions on Haptics (ToH) is a scholarly archival journal that addresses the science, technology, and applications associated with information acquisition and object manipulation through touch. Haptic interactions relevant to this journal include all aspects of manual exploration and manipulation of objects by humans, machines and interactions between the two, performed in real, virtual, teleoperated or networked environments. Research areas of relevance to this publication include, but are not limited to, the following topics: Human haptic and multi-sensory perception and action, Aspects of motor control that explicitly pertain to human haptics, Haptic interactions via passive or active tools and machines, Devices that sense, enable, or create haptic interactions locally or at a distance, Haptic rendering and its association with graphic and auditory rendering in virtual reality, Algorithms, controls, and dynamics of haptic devices, users, and interactions between the two, Human-machine performance and safety with haptic feedback, Haptics in the context of human-computer interactions, Systems and networks using haptic devices and interactions, including multi-modal feedback, Application of the above, for example in areas such as education, rehabilitation, medicine, computer-aided design, skills training, computer games, driver controls, simulation, and visualization.