{"title":"结合途径工程与碳汇去除的蓝藻在室外自然阳光下的光合异丁醇生产。","authors":"Meenakshi Das, Soumen K Maiti","doi":"10.1007/s00449-025-03217-2","DOIUrl":null,"url":null,"abstract":"<p><p>There is significant interest in employing cyanobacteria for eco-friendly biofuel production, utilizing CO<sub>2</sub> and sunlight. Recent advancements highlight the advantages of pathway engineering in cyanobacteria in enhancing the yields of biobutanol from the engineered strains. Isobutanol has excellent potential as an alternative fuel and can be blended with gasoline in ratios reaching 100% for use in existing internal combustion engines (ICE). This research focuses on the genetic engineering of Synechocystis sp. PCC 6803 to create mutant strains impaired in PHB synthesis but can biosynthesize isobutanol through an incorporated 2-keto-acid pathway in their genome. The synthesis of isobutanol is achieved through the heterologous expression of α-ketoisovalerate decarboxylase (Kivd) and alcohol dehydrogenase (Yqhd), both driven by the strong, light-inducible psbA2 promoter. The PHB synthase mutant strain ECDM12, which produces isobutanol, showed a 3.8-fold higher titer than PHB-synthesizing strains under identical cultivation conditions. Indoor cultivation in a 2 L photobioreactor (PBR) under simulated diurnal light resulted in the highest titer of 687.6 mg L<sup>-1</sup> (11th day) and productivity of 64.1 mg L<sup>-1</sup> day<sup>-1</sup>. Outdoor studies in PBR under natural sunlight resulted in a maximum titer of 398 mg L<sup>-1</sup> (15th day) and productivity of 33.7 mg L<sup>-1</sup> day<sup>-1</sup>, marking the first photosynthetic isobutanol production under natural sunlight.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":"1861-1872"},"PeriodicalIF":3.6000,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photosynthetic isobutanol production by integrating pathway engineering with carbon sink removal in cyanobacteria under outdoor natural sunlight.\",\"authors\":\"Meenakshi Das, Soumen K Maiti\",\"doi\":\"10.1007/s00449-025-03217-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>There is significant interest in employing cyanobacteria for eco-friendly biofuel production, utilizing CO<sub>2</sub> and sunlight. Recent advancements highlight the advantages of pathway engineering in cyanobacteria in enhancing the yields of biobutanol from the engineered strains. Isobutanol has excellent potential as an alternative fuel and can be blended with gasoline in ratios reaching 100% for use in existing internal combustion engines (ICE). This research focuses on the genetic engineering of Synechocystis sp. PCC 6803 to create mutant strains impaired in PHB synthesis but can biosynthesize isobutanol through an incorporated 2-keto-acid pathway in their genome. The synthesis of isobutanol is achieved through the heterologous expression of α-ketoisovalerate decarboxylase (Kivd) and alcohol dehydrogenase (Yqhd), both driven by the strong, light-inducible psbA2 promoter. The PHB synthase mutant strain ECDM12, which produces isobutanol, showed a 3.8-fold higher titer than PHB-synthesizing strains under identical cultivation conditions. Indoor cultivation in a 2 L photobioreactor (PBR) under simulated diurnal light resulted in the highest titer of 687.6 mg L<sup>-1</sup> (11th day) and productivity of 64.1 mg L<sup>-1</sup> day<sup>-1</sup>. Outdoor studies in PBR under natural sunlight resulted in a maximum titer of 398 mg L<sup>-1</sup> (15th day) and productivity of 33.7 mg L<sup>-1</sup> day<sup>-1</sup>, marking the first photosynthetic isobutanol production under natural sunlight.</p>\",\"PeriodicalId\":9024,\"journal\":{\"name\":\"Bioprocess and Biosystems Engineering\",\"volume\":\" \",\"pages\":\"1861-1872\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioprocess and Biosystems Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00449-025-03217-2\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioprocess and Biosystems Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00449-025-03217-2","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/1 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Photosynthetic isobutanol production by integrating pathway engineering with carbon sink removal in cyanobacteria under outdoor natural sunlight.
There is significant interest in employing cyanobacteria for eco-friendly biofuel production, utilizing CO2 and sunlight. Recent advancements highlight the advantages of pathway engineering in cyanobacteria in enhancing the yields of biobutanol from the engineered strains. Isobutanol has excellent potential as an alternative fuel and can be blended with gasoline in ratios reaching 100% for use in existing internal combustion engines (ICE). This research focuses on the genetic engineering of Synechocystis sp. PCC 6803 to create mutant strains impaired in PHB synthesis but can biosynthesize isobutanol through an incorporated 2-keto-acid pathway in their genome. The synthesis of isobutanol is achieved through the heterologous expression of α-ketoisovalerate decarboxylase (Kivd) and alcohol dehydrogenase (Yqhd), both driven by the strong, light-inducible psbA2 promoter. The PHB synthase mutant strain ECDM12, which produces isobutanol, showed a 3.8-fold higher titer than PHB-synthesizing strains under identical cultivation conditions. Indoor cultivation in a 2 L photobioreactor (PBR) under simulated diurnal light resulted in the highest titer of 687.6 mg L-1 (11th day) and productivity of 64.1 mg L-1 day-1. Outdoor studies in PBR under natural sunlight resulted in a maximum titer of 398 mg L-1 (15th day) and productivity of 33.7 mg L-1 day-1, marking the first photosynthetic isobutanol production under natural sunlight.
期刊介绍:
Bioprocess and Biosystems Engineering provides an international peer-reviewed forum to facilitate the discussion between engineering and biological science to find efficient solutions in the development and improvement of bioprocesses. The aim of the journal is to focus more attention on the multidisciplinary approaches for integrative bioprocess design. Of special interest are the rational manipulation of biosystems through metabolic engineering techniques to provide new biocatalysts as well as the model based design of bioprocesses (up-stream processing, bioreactor operation and downstream processing) that will lead to new and sustainable production processes.
Contributions are targeted at new approaches for rational and evolutive design of cellular systems by taking into account the environment and constraints of technical production processes, integration of recombinant technology and process design, as well as new hybrid intersections such as bioinformatics and process systems engineering. Manuscripts concerning the design, simulation, experimental validation, control, and economic as well as ecological evaluation of novel processes using biosystems or parts thereof (e.g., enzymes, microorganisms, mammalian cells, plant cells, or tissue), their related products, or technical devices are also encouraged.
The Editors will consider papers for publication based on novelty, their impact on biotechnological production and their contribution to the advancement of bioprocess and biosystems engineering science. Submission of papers dealing with routine aspects of bioprocess engineering (e.g., routine application of established methodologies, and description of established equipment) are discouraged.