Seongwoo Kim;Gunwook Yoon;Seungjae Baik;Myounggon Kang
{"title":"凹槽结构V-NAND的保留特性和DMP效率","authors":"Seongwoo Kim;Gunwook Yoon;Seungjae Baik;Myounggon Kang","doi":"10.1109/JEDS.2025.3589680","DOIUrl":null,"url":null,"abstract":"In this paper, we analyze the retention characteristics of vertical NAND(V-NAND) with dimpled (convex and concave) structures considering the impact of adjacent cell states. Additionally, we assess the efficiency of the previously proposed dummy cell program (DMP) in improving retention characteristics. Our results indicate that when the adjacent cell is in the erased state, the retention characteristics of the target cell are affected by conduction band <inline-formula> <tex-math>$(E_{C})$ </tex-math></inline-formula> variations due to trapped electrons. The concave structure shows the best retention characteristics, whereas the convex structure shows the most degradation. This difference becomes even more pronounced when the adjacent cell is in the programmed state. However, when DMP is applied to the convex structure, which exhibits the most degraded retention characteristics, the greatest improvement is observed due to significant changes in channel potential <inline-formula> <tex-math>$(V_{ch})$ </tex-math></inline-formula> caused by the fast-programming speed.","PeriodicalId":13210,"journal":{"name":"IEEE Journal of the Electron Devices Society","volume":"13 ","pages":"655-658"},"PeriodicalIF":2.4000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11082327","citationCount":"0","resultStr":"{\"title\":\"Retention Characteristics and DMP Efficiency in V-NAND With Dimple Structure\",\"authors\":\"Seongwoo Kim;Gunwook Yoon;Seungjae Baik;Myounggon Kang\",\"doi\":\"10.1109/JEDS.2025.3589680\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we analyze the retention characteristics of vertical NAND(V-NAND) with dimpled (convex and concave) structures considering the impact of adjacent cell states. Additionally, we assess the efficiency of the previously proposed dummy cell program (DMP) in improving retention characteristics. Our results indicate that when the adjacent cell is in the erased state, the retention characteristics of the target cell are affected by conduction band <inline-formula> <tex-math>$(E_{C})$ </tex-math></inline-formula> variations due to trapped electrons. The concave structure shows the best retention characteristics, whereas the convex structure shows the most degradation. This difference becomes even more pronounced when the adjacent cell is in the programmed state. However, when DMP is applied to the convex structure, which exhibits the most degraded retention characteristics, the greatest improvement is observed due to significant changes in channel potential <inline-formula> <tex-math>$(V_{ch})$ </tex-math></inline-formula> caused by the fast-programming speed.\",\"PeriodicalId\":13210,\"journal\":{\"name\":\"IEEE Journal of the Electron Devices Society\",\"volume\":\"13 \",\"pages\":\"655-658\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11082327\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of the Electron Devices Society\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11082327/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of the Electron Devices Society","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11082327/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Retention Characteristics and DMP Efficiency in V-NAND With Dimple Structure
In this paper, we analyze the retention characteristics of vertical NAND(V-NAND) with dimpled (convex and concave) structures considering the impact of adjacent cell states. Additionally, we assess the efficiency of the previously proposed dummy cell program (DMP) in improving retention characteristics. Our results indicate that when the adjacent cell is in the erased state, the retention characteristics of the target cell are affected by conduction band $(E_{C})$ variations due to trapped electrons. The concave structure shows the best retention characteristics, whereas the convex structure shows the most degradation. This difference becomes even more pronounced when the adjacent cell is in the programmed state. However, when DMP is applied to the convex structure, which exhibits the most degraded retention characteristics, the greatest improvement is observed due to significant changes in channel potential $(V_{ch})$ caused by the fast-programming speed.
期刊介绍:
The IEEE Journal of the Electron Devices Society (J-EDS) is an open-access, fully electronic scientific journal publishing papers ranging from fundamental to applied research that are scientifically rigorous and relevant to electron devices. The J-EDS publishes original and significant contributions relating to the theory, modelling, design, performance, and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanodevices, optoelectronics, photovoltaics, power IC''s, and micro-sensors. Tutorial and review papers on these subjects are, also, published. And, occasionally special issues with a collection of papers on particular areas in more depth and breadth are, also, published. J-EDS publishes all papers that are judged to be technically valid and original.