结合机器学习、计算化学、实验和系统模拟的太阳能热化学氢材料的发现

IF 11.9 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Jonathan Perry, Laura Molina, Alberto de la Calle, Raul Peño, Timothy W. Jones, M. Verónica Ganduglia-Pirovano, Silvia Jiménez-Fernández, Scott W. Donne, Juan M. Coronado, Alicia Bayon
{"title":"结合机器学习、计算化学、实验和系统模拟的太阳能热化学氢材料的发现","authors":"Jonathan Perry, Laura Molina, Alberto de la Calle, Raul Peño, Timothy W. Jones, M. Verónica Ganduglia-Pirovano, Silvia Jiménez-Fernández, Scott W. Donne, Juan M. Coronado, Alicia Bayon","doi":"10.1038/s41524-025-01726-y","DOIUrl":null,"url":null,"abstract":"<p>This study integrates first-principles calculations, computational chemistry, system simulations, experiments, and machine learning to identify redox perovskite oxides for solar thermochemical hydrogen production. Using two random forest regressions and one classification model, the approach predicts materials’ stability and the enthalpy of oxygen vacancy formation (<span>\\(\\Delta {h}_{o}\\)</span>), a critical property for selecting materials for thermochemical hydrogen production. B-site composition significantly influences <span>\\(\\Delta {h}_{o}\\)</span> predictions. The methodology led to the discovery of Ba<sub>0.875</sub>Ca<sub>0.125</sub>Zr<sub>0.875</sub>Mn<sub>0.125</sub>O<sub>3</sub> (BCZM), which reduces at temperatures up to 250 °C lower than CeO<sub>2</sub> and is expected to outperform other perovskites in water splitting. However, CeO<sub>2</sub> remains the benchmark for solar thermochemical hydrogen production. The combined use of machine learning and DFT calculations refined <span>\\(\\triangle {h}_{o}\\)</span> predictions and provided insights into experimental results. This framework not only enhances database creation for material screening but also establishes a novel approach for perovskite discovery for hydrogen production applications.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"217 1","pages":""},"PeriodicalIF":11.9000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discovery of materials for solar thermochemical hydrogen combining machine learning, computational chemistry, experiments and system simulations\",\"authors\":\"Jonathan Perry, Laura Molina, Alberto de la Calle, Raul Peño, Timothy W. Jones, M. Verónica Ganduglia-Pirovano, Silvia Jiménez-Fernández, Scott W. Donne, Juan M. Coronado, Alicia Bayon\",\"doi\":\"10.1038/s41524-025-01726-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study integrates first-principles calculations, computational chemistry, system simulations, experiments, and machine learning to identify redox perovskite oxides for solar thermochemical hydrogen production. Using two random forest regressions and one classification model, the approach predicts materials’ stability and the enthalpy of oxygen vacancy formation (<span>\\\\(\\\\Delta {h}_{o}\\\\)</span>), a critical property for selecting materials for thermochemical hydrogen production. B-site composition significantly influences <span>\\\\(\\\\Delta {h}_{o}\\\\)</span> predictions. The methodology led to the discovery of Ba<sub>0.875</sub>Ca<sub>0.125</sub>Zr<sub>0.875</sub>Mn<sub>0.125</sub>O<sub>3</sub> (BCZM), which reduces at temperatures up to 250 °C lower than CeO<sub>2</sub> and is expected to outperform other perovskites in water splitting. However, CeO<sub>2</sub> remains the benchmark for solar thermochemical hydrogen production. The combined use of machine learning and DFT calculations refined <span>\\\\(\\\\triangle {h}_{o}\\\\)</span> predictions and provided insights into experimental results. This framework not only enhances database creation for material screening but also establishes a novel approach for perovskite discovery for hydrogen production applications.</p>\",\"PeriodicalId\":19342,\"journal\":{\"name\":\"npj Computational Materials\",\"volume\":\"217 1\",\"pages\":\"\"},\"PeriodicalIF\":11.9000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Computational Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41524-025-01726-y\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01726-y","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究结合第一性原理计算、计算化学、系统模拟、实验和机器学习来识别用于太阳能热化学制氢的氧化还原钙钛矿氧化物。使用两个随机森林回归和一个分类模型,该方法预测材料的稳定性和氧空位形成焓(\(\Delta {h}_{o}\)),这是选择用于热化学制氢的材料的关键属性。b位组成显著影响\(\Delta {h}_{o}\)预测。该方法发现了Ba0.875Ca0.125Zr0.875Mn0.125O3 (BCZM),它在温度低于CeO2的250°C下还原,并且有望在水分解方面优于其他钙钛矿。然而,CeO2仍然是太阳能热化学制氢的基准。机器学习和DFT计算的结合使用改进了\(\triangle {h}_{o}\)预测,并提供了对实验结果的见解。该框架不仅增强了材料筛选数据库的创建,而且为氢生产应用中的钙钛矿发现建立了一种新的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Discovery of materials for solar thermochemical hydrogen combining machine learning, computational chemistry, experiments and system simulations

Discovery of materials for solar thermochemical hydrogen combining machine learning, computational chemistry, experiments and system simulations

This study integrates first-principles calculations, computational chemistry, system simulations, experiments, and machine learning to identify redox perovskite oxides for solar thermochemical hydrogen production. Using two random forest regressions and one classification model, the approach predicts materials’ stability and the enthalpy of oxygen vacancy formation (\(\Delta {h}_{o}\)), a critical property for selecting materials for thermochemical hydrogen production. B-site composition significantly influences \(\Delta {h}_{o}\) predictions. The methodology led to the discovery of Ba0.875Ca0.125Zr0.875Mn0.125O3 (BCZM), which reduces at temperatures up to 250 °C lower than CeO2 and is expected to outperform other perovskites in water splitting. However, CeO2 remains the benchmark for solar thermochemical hydrogen production. The combined use of machine learning and DFT calculations refined \(\triangle {h}_{o}\) predictions and provided insights into experimental results. This framework not only enhances database creation for material screening but also establishes a novel approach for perovskite discovery for hydrogen production applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Computational Materials
npj Computational Materials Mathematics-Modeling and Simulation
CiteScore
15.30
自引率
5.20%
发文量
229
审稿时长
6 weeks
期刊介绍: npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings. Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信