{"title":"突破障碍:通过云平台和基于课程的本科研究拓宽神经科学教育。","authors":"Franco Delogu, Chantol Aspinall, Kimberly Ray, Anibal Solon Heinsfeld, Conner Victory, Franco Pestilli","doi":"10.3389/fninf.2025.1608900","DOIUrl":null,"url":null,"abstract":"<p><p>This study demonstrates the effectiveness of integrating cloud computing platforms with Course-based Undergraduate Research Experiences (CUREs) to broaden access to neuroscience education. Over four consecutive spring semesters (2021-2024), a total of 42 undergraduate students at Lawrence Technological University participated in computational neuroscience CUREs using brainlife.io, a cloud-computing platform. Students conducted anatomical and functional brain imaging analyses on openly available datasets, testing original hypotheses about brain structure variations. The program evolved from initial data processing to hypothesis-driven research exploring the influence of age, gender, and pathology on brain structures. By combining open science and big data within a user-friendly cloud environment, the CURE model provided hands-on, problem-based learning to students with limited prior knowledge. This approach addressed key limitations of traditional undergraduate research experiences, including scalability, early exposure, and inclusivity. Students consistently worked with MRI datasets, focusing on volumetric analysis of brain structures, and developed scientific communication skills by presenting findings at annual research days. The success of this program demonstrates its potential to democratize neuroscience education, enabling advanced research without extensive laboratory facilities or prior experience, and promoting original undergraduate research using real-world datasets.</p>","PeriodicalId":12462,"journal":{"name":"Frontiers in Neuroinformatics","volume":"19 ","pages":"1608900"},"PeriodicalIF":2.5000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12307389/pdf/","citationCount":"0","resultStr":"{\"title\":\"Breaking barriers: broadening neuroscience education via cloud platforms and course-based undergraduate research.\",\"authors\":\"Franco Delogu, Chantol Aspinall, Kimberly Ray, Anibal Solon Heinsfeld, Conner Victory, Franco Pestilli\",\"doi\":\"10.3389/fninf.2025.1608900\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study demonstrates the effectiveness of integrating cloud computing platforms with Course-based Undergraduate Research Experiences (CUREs) to broaden access to neuroscience education. Over four consecutive spring semesters (2021-2024), a total of 42 undergraduate students at Lawrence Technological University participated in computational neuroscience CUREs using brainlife.io, a cloud-computing platform. Students conducted anatomical and functional brain imaging analyses on openly available datasets, testing original hypotheses about brain structure variations. The program evolved from initial data processing to hypothesis-driven research exploring the influence of age, gender, and pathology on brain structures. By combining open science and big data within a user-friendly cloud environment, the CURE model provided hands-on, problem-based learning to students with limited prior knowledge. This approach addressed key limitations of traditional undergraduate research experiences, including scalability, early exposure, and inclusivity. Students consistently worked with MRI datasets, focusing on volumetric analysis of brain structures, and developed scientific communication skills by presenting findings at annual research days. The success of this program demonstrates its potential to democratize neuroscience education, enabling advanced research without extensive laboratory facilities or prior experience, and promoting original undergraduate research using real-world datasets.</p>\",\"PeriodicalId\":12462,\"journal\":{\"name\":\"Frontiers in Neuroinformatics\",\"volume\":\"19 \",\"pages\":\"1608900\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12307389/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Neuroinformatics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/fninf.2025.1608900\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neuroinformatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fninf.2025.1608900","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Breaking barriers: broadening neuroscience education via cloud platforms and course-based undergraduate research.
This study demonstrates the effectiveness of integrating cloud computing platforms with Course-based Undergraduate Research Experiences (CUREs) to broaden access to neuroscience education. Over four consecutive spring semesters (2021-2024), a total of 42 undergraduate students at Lawrence Technological University participated in computational neuroscience CUREs using brainlife.io, a cloud-computing platform. Students conducted anatomical and functional brain imaging analyses on openly available datasets, testing original hypotheses about brain structure variations. The program evolved from initial data processing to hypothesis-driven research exploring the influence of age, gender, and pathology on brain structures. By combining open science and big data within a user-friendly cloud environment, the CURE model provided hands-on, problem-based learning to students with limited prior knowledge. This approach addressed key limitations of traditional undergraduate research experiences, including scalability, early exposure, and inclusivity. Students consistently worked with MRI datasets, focusing on volumetric analysis of brain structures, and developed scientific communication skills by presenting findings at annual research days. The success of this program demonstrates its potential to democratize neuroscience education, enabling advanced research without extensive laboratory facilities or prior experience, and promoting original undergraduate research using real-world datasets.
期刊介绍:
Frontiers in Neuroinformatics publishes rigorously peer-reviewed research on the development and implementation of numerical/computational models and analytical tools used to share, integrate and analyze experimental data and advance theories of the nervous system functions. Specialty Chief Editors Jan G. Bjaalie at the University of Oslo and Sean L. Hill at the École Polytechnique Fédérale de Lausanne are supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics and the public worldwide.
Neuroscience is being propelled into the information age as the volume of information explodes, demanding organization and synthesis. Novel synthesis approaches are opening up a new dimension for the exploration of the components of brain elements and systems and the vast number of variables that underlie their functions. Neural data is highly heterogeneous with complex inter-relations across multiple levels, driving the need for innovative organizing and synthesizing approaches from genes to cognition, and covering a range of species and disease states.
Frontiers in Neuroinformatics therefore welcomes submissions on existing neuroscience databases, development of data and knowledge bases for all levels of neuroscience, applications and technologies that can facilitate data sharing (interoperability, formats, terminologies, and ontologies), and novel tools for data acquisition, analyses, visualization, and dissemination of nervous system data. Our journal welcomes submissions on new tools (software and hardware) that support brain modeling, and the merging of neuroscience databases with brain models used for simulation and visualization.