丘脑皮层回路的感觉模式特异性布线

IF 26.7 1区 医学 Q1 NEUROSCIENCES
Teresa Guillamón-Vivancos, Mar Aníbal-Martínez, Lorenzo Puche-Aroca, Francisco J. Martini, Guillermina López-Bendito
{"title":"丘脑皮层回路的感觉模式特异性布线","authors":"Teresa Guillamón-Vivancos, Mar Aníbal-Martínez, Lorenzo Puche-Aroca, Francisco J. Martini, Guillermina López-Bendito","doi":"10.1038/s41583-025-00945-y","DOIUrl":null,"url":null,"abstract":"The thalamus is an essential element for sensory information processing, serving as a link between peripheral sensory stimuli and cortical circuits. Consequently, the development of thalamocortical (TC) projections has been a central focus in systems neuroscience. Although substantial progress has been made in understanding the mechanisms guiding thalamic axon navigation from the diencephalon to the cortex, our understanding of the processes underlying sensory modality specificity in TC circuits remains incomplete. Modern genomic, physiological and imaging approaches have yielded exciting results, providing novel insights into the specialization of visual, somatosensory and auditory TC circuits. Recent findings have shed light on the genetic and spontaneous activity mechanisms involved in the formation of distinct sensory modalities, rekindling the interest in the thalamus and opening new research perspectives on the development of this diencephalic structure. The use of transcriptomic technologies has led to advances in our understanding of thalamocortical targeting during development. In this Review, Guillamón-Vivancos et al. discuss these advances in the context of how transcriptomic changes and neuronal activity work in concert to drive sensory modality specificity during the development of thalamic sensory nuclei.","PeriodicalId":49142,"journal":{"name":"Nature Reviews Neuroscience","volume":"26 10","pages":"623-641"},"PeriodicalIF":26.7000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sensory modality-specific wiring of thalamocortical circuits\",\"authors\":\"Teresa Guillamón-Vivancos, Mar Aníbal-Martínez, Lorenzo Puche-Aroca, Francisco J. Martini, Guillermina López-Bendito\",\"doi\":\"10.1038/s41583-025-00945-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The thalamus is an essential element for sensory information processing, serving as a link between peripheral sensory stimuli and cortical circuits. Consequently, the development of thalamocortical (TC) projections has been a central focus in systems neuroscience. Although substantial progress has been made in understanding the mechanisms guiding thalamic axon navigation from the diencephalon to the cortex, our understanding of the processes underlying sensory modality specificity in TC circuits remains incomplete. Modern genomic, physiological and imaging approaches have yielded exciting results, providing novel insights into the specialization of visual, somatosensory and auditory TC circuits. Recent findings have shed light on the genetic and spontaneous activity mechanisms involved in the formation of distinct sensory modalities, rekindling the interest in the thalamus and opening new research perspectives on the development of this diencephalic structure. The use of transcriptomic technologies has led to advances in our understanding of thalamocortical targeting during development. In this Review, Guillamón-Vivancos et al. discuss these advances in the context of how transcriptomic changes and neuronal activity work in concert to drive sensory modality specificity during the development of thalamic sensory nuclei.\",\"PeriodicalId\":49142,\"journal\":{\"name\":\"Nature Reviews Neuroscience\",\"volume\":\"26 10\",\"pages\":\"623-641\"},\"PeriodicalIF\":26.7000,\"publicationDate\":\"2025-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Reviews Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.nature.com/articles/s41583-025-00945-y\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41583-025-00945-y","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

丘脑是感觉信息处理的重要组成部分,是连接周围感觉刺激和皮层回路的纽带。因此,丘脑皮质(TC)投射的发展一直是系统神经科学的中心焦点。尽管在了解丘脑轴突从间脑到皮层的导航机制方面取得了实质性进展,但我们对TC回路中感觉模式特异性的过程的理解仍然不完整。现代基因组学、生理学和成像方法已经取得了令人兴奋的结果,为视觉、体感和听觉TC回路的专业化提供了新的见解。最近的研究结果揭示了不同感觉模式形成的遗传和自发活动机制,重新点燃了对丘脑的兴趣,并为这种间脑结构的发展开辟了新的研究视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Sensory modality-specific wiring of thalamocortical circuits

Sensory modality-specific wiring of thalamocortical circuits

Sensory modality-specific wiring of thalamocortical circuits
The thalamus is an essential element for sensory information processing, serving as a link between peripheral sensory stimuli and cortical circuits. Consequently, the development of thalamocortical (TC) projections has been a central focus in systems neuroscience. Although substantial progress has been made in understanding the mechanisms guiding thalamic axon navigation from the diencephalon to the cortex, our understanding of the processes underlying sensory modality specificity in TC circuits remains incomplete. Modern genomic, physiological and imaging approaches have yielded exciting results, providing novel insights into the specialization of visual, somatosensory and auditory TC circuits. Recent findings have shed light on the genetic and spontaneous activity mechanisms involved in the formation of distinct sensory modalities, rekindling the interest in the thalamus and opening new research perspectives on the development of this diencephalic structure. The use of transcriptomic technologies has led to advances in our understanding of thalamocortical targeting during development. In this Review, Guillamón-Vivancos et al. discuss these advances in the context of how transcriptomic changes and neuronal activity work in concert to drive sensory modality specificity during the development of thalamic sensory nuclei.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.60%
发文量
104
期刊介绍: Nature Reviews Neuroscience is a multidisciplinary journal that covers various fields within neuroscience, aiming to offer a comprehensive understanding of the structure and function of the central nervous system. Advances in molecular, developmental, and cognitive neuroscience, facilitated by powerful experimental techniques and theoretical approaches, have made enduring neurobiological questions more accessible. Nature Reviews Neuroscience serves as a reliable and accessible resource, addressing the breadth and depth of modern neuroscience. It acts as an authoritative and engaging reference for scientists interested in all aspects of neuroscience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信