{"title":"自诱导剂-2介导的群体感应稳定褐藻与合成细菌群落的合作,协同提高小麦的抗旱性。","authors":"Xueyuan Lin,Jianhu Liu,Wenguang Yang,Huimin Zhang,Lei Zhang","doi":"10.1021/acs.jafc.5c04543","DOIUrl":null,"url":null,"abstract":"Quorum sensing (QS), a mechanism of intercellular communication, plays a crucial role in regulating the microbial community behavior and function. However, the role of the LuxS/AI-2 system in shaping wheat rhizosphere microbiota remains unclear. In this study, the luxS gene, encoding autoinducer-2 (AI-2) synthase, was deleted from Pantoea alhagi LTYR-11Z, resulting in significantly impaired biofilm formation, AI-2 production, and root colonization. A 4-week pot experiment revealed that the wild-type (WT) strain markedly altered the composition, diversity, and structure of rhizosphere bacterial communities compared to the control and ΔluxS mutant groups. Notably, AI-2-mediated microbial recruitment enhanced hybrid biofilm formation. Potting drought experiments showed that AI-2 signaling induced SynCom collaboration, allowing WT+SynCom to activate antioxidant enzymes more efficiently and increase the total N/P concentration in wheat, alleviating drought stress damage. These findings demonstrate that QS acts as a selective force in the rhizosphere microbiome assembly, enriching plant-beneficial species and improving stress resilience.","PeriodicalId":41,"journal":{"name":"Journal of Agricultural and Food Chemistry","volume":"15 1","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Autoinducer-2 Mediated Quorum Sensing Stabilizes Cooperation between Pantoea alhagi and Synthetic Bacterial Communities, Synergistically Improving Drought Tolerance in Wheat.\",\"authors\":\"Xueyuan Lin,Jianhu Liu,Wenguang Yang,Huimin Zhang,Lei Zhang\",\"doi\":\"10.1021/acs.jafc.5c04543\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quorum sensing (QS), a mechanism of intercellular communication, plays a crucial role in regulating the microbial community behavior and function. However, the role of the LuxS/AI-2 system in shaping wheat rhizosphere microbiota remains unclear. In this study, the luxS gene, encoding autoinducer-2 (AI-2) synthase, was deleted from Pantoea alhagi LTYR-11Z, resulting in significantly impaired biofilm formation, AI-2 production, and root colonization. A 4-week pot experiment revealed that the wild-type (WT) strain markedly altered the composition, diversity, and structure of rhizosphere bacterial communities compared to the control and ΔluxS mutant groups. Notably, AI-2-mediated microbial recruitment enhanced hybrid biofilm formation. Potting drought experiments showed that AI-2 signaling induced SynCom collaboration, allowing WT+SynCom to activate antioxidant enzymes more efficiently and increase the total N/P concentration in wheat, alleviating drought stress damage. These findings demonstrate that QS acts as a selective force in the rhizosphere microbiome assembly, enriching plant-beneficial species and improving stress resilience.\",\"PeriodicalId\":41,\"journal\":{\"name\":\"Journal of Agricultural and Food Chemistry\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Agricultural and Food Chemistry\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jafc.5c04543\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural and Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1021/acs.jafc.5c04543","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
Autoinducer-2 Mediated Quorum Sensing Stabilizes Cooperation between Pantoea alhagi and Synthetic Bacterial Communities, Synergistically Improving Drought Tolerance in Wheat.
Quorum sensing (QS), a mechanism of intercellular communication, plays a crucial role in regulating the microbial community behavior and function. However, the role of the LuxS/AI-2 system in shaping wheat rhizosphere microbiota remains unclear. In this study, the luxS gene, encoding autoinducer-2 (AI-2) synthase, was deleted from Pantoea alhagi LTYR-11Z, resulting in significantly impaired biofilm formation, AI-2 production, and root colonization. A 4-week pot experiment revealed that the wild-type (WT) strain markedly altered the composition, diversity, and structure of rhizosphere bacterial communities compared to the control and ΔluxS mutant groups. Notably, AI-2-mediated microbial recruitment enhanced hybrid biofilm formation. Potting drought experiments showed that AI-2 signaling induced SynCom collaboration, allowing WT+SynCom to activate antioxidant enzymes more efficiently and increase the total N/P concentration in wheat, alleviating drought stress damage. These findings demonstrate that QS acts as a selective force in the rhizosphere microbiome assembly, enriching plant-beneficial species and improving stress resilience.
期刊介绍:
The Journal of Agricultural and Food Chemistry publishes high-quality, cutting edge original research representing complete studies and research advances dealing with the chemistry and biochemistry of agriculture and food. The Journal also encourages papers with chemistry and/or biochemistry as a major component combined with biological/sensory/nutritional/toxicological evaluation related to agriculture and/or food.