Hong Kyu Lee, Hyoung Soo Kim, Sung Gyun Kim, Jae Yong Park
{"title":"胸片对急性肋骨骨折检测系统的自我评价:早期放射学诊断的初步研究。","authors":"Hong Kyu Lee, Hyoung Soo Kim, Sung Gyun Kim, Jae Yong Park","doi":"10.1177/08953996251361041","DOIUrl":null,"url":null,"abstract":"<p><p>ObjectiveDetecting and accurately diagnosing rib fractures in chest radiographs is a challenging and time-consuming task for radiologists. This study presents a novel deep learning system designed to automate the detection and segmentation of rib fractures in chest radiographs.MethodsThe proposed method combines CenterNet with HRNet v2 for precise fracture region identification and HRNet-W48 with contextual representation to enhance rib segmentation. A dataset consisting of 1006 chest radiographs from a tertiary hospital in Korea was used, with a split of 7:2:1 for training, validation, and testing.ResultsThe rib fracture detection component achieved a sensitivity of 0.7171, indicating its effectiveness in identifying fractures. Additionally, the rib segmentation performance was measured by a dice score of 0.86, demonstrating its accuracy in delineating rib structures. Visual assessment results further highlight the model's capability to pinpoint fractures and segment ribs accurately.ConclusionThis innovative approach holds promise for improving rib fracture detection and rib segmentation, offering potential benefits in clinical practice for more efficient and accurate diagnosis in the field of medical image analysis.</p>","PeriodicalId":49948,"journal":{"name":"Journal of X-Ray Science and Technology","volume":" ","pages":"8953996251361041"},"PeriodicalIF":1.4000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-Assessment of acute rib fracture detection system from chest X-ray: Preliminary study for early radiological diagnosis.\",\"authors\":\"Hong Kyu Lee, Hyoung Soo Kim, Sung Gyun Kim, Jae Yong Park\",\"doi\":\"10.1177/08953996251361041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>ObjectiveDetecting and accurately diagnosing rib fractures in chest radiographs is a challenging and time-consuming task for radiologists. This study presents a novel deep learning system designed to automate the detection and segmentation of rib fractures in chest radiographs.MethodsThe proposed method combines CenterNet with HRNet v2 for precise fracture region identification and HRNet-W48 with contextual representation to enhance rib segmentation. A dataset consisting of 1006 chest radiographs from a tertiary hospital in Korea was used, with a split of 7:2:1 for training, validation, and testing.ResultsThe rib fracture detection component achieved a sensitivity of 0.7171, indicating its effectiveness in identifying fractures. Additionally, the rib segmentation performance was measured by a dice score of 0.86, demonstrating its accuracy in delineating rib structures. Visual assessment results further highlight the model's capability to pinpoint fractures and segment ribs accurately.ConclusionThis innovative approach holds promise for improving rib fracture detection and rib segmentation, offering potential benefits in clinical practice for more efficient and accurate diagnosis in the field of medical image analysis.</p>\",\"PeriodicalId\":49948,\"journal\":{\"name\":\"Journal of X-Ray Science and Technology\",\"volume\":\" \",\"pages\":\"8953996251361041\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of X-Ray Science and Technology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/08953996251361041\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of X-Ray Science and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/08953996251361041","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
Self-Assessment of acute rib fracture detection system from chest X-ray: Preliminary study for early radiological diagnosis.
ObjectiveDetecting and accurately diagnosing rib fractures in chest radiographs is a challenging and time-consuming task for radiologists. This study presents a novel deep learning system designed to automate the detection and segmentation of rib fractures in chest radiographs.MethodsThe proposed method combines CenterNet with HRNet v2 for precise fracture region identification and HRNet-W48 with contextual representation to enhance rib segmentation. A dataset consisting of 1006 chest radiographs from a tertiary hospital in Korea was used, with a split of 7:2:1 for training, validation, and testing.ResultsThe rib fracture detection component achieved a sensitivity of 0.7171, indicating its effectiveness in identifying fractures. Additionally, the rib segmentation performance was measured by a dice score of 0.86, demonstrating its accuracy in delineating rib structures. Visual assessment results further highlight the model's capability to pinpoint fractures and segment ribs accurately.ConclusionThis innovative approach holds promise for improving rib fracture detection and rib segmentation, offering potential benefits in clinical practice for more efficient and accurate diagnosis in the field of medical image analysis.
期刊介绍:
Research areas within the scope of the journal include:
Interaction of x-rays with matter: x-ray phenomena, biological effects of radiation, radiation safety and optical constants
X-ray sources: x-rays from synchrotrons, x-ray lasers, plasmas, and other sources, conventional or unconventional
Optical elements: grazing incidence optics, multilayer mirrors, zone plates, gratings, other diffraction optics
Optical instruments: interferometers, spectrometers, microscopes, telescopes, microprobes