小波-注意深度模型在小儿多动症脑电诊断中的应用。

IF 1.1 4区 心理学 Q4 CLINICAL NEUROLOGY
Babak Masoudi
{"title":"小波-注意深度模型在小儿多动症脑电诊断中的应用。","authors":"Babak Masoudi","doi":"10.1080/21622965.2025.2535017","DOIUrl":null,"url":null,"abstract":"<p><p>Attention-deficit/hyperactivity disorder (ADHD) is a prevalent neurodevelopmental disorder in children, impacting academic performance, social interactions, and overall well-being. Early and accurate diagnosis is crucial, yet current methods rely heavily on subjective assessments. This study presents a novel Wavelet-Attention deep model for objective ADHD diagnosis using electroencephalography signals. The model integrates a wavelet transform for feature extraction with a deep residual network (ResNet) augmented by an attention mechanism to enhance focus on salient features. Rigorous preprocessing, including Independent Component Analysis for artifact removal, was applied to a publicly available dataset of 121 children. To ensure a robust and clinically relevant evaluation that avoids data leakage, a strict Leave-One-Subject-Out cross-validation protocol was employed. The proposed model demonstrated strong diagnostic performance, achieving an accuracy of 96.69%, a sensitivity of 95.08%, and a specificity of 98.33% in distinguishing between children with ADHD and healthy controls. Furthermore, model-agnostic interpretability analysis revealed that features derived from frontal lobe channels and low-frequency wavelet coefficients were most critical for the model's decisions, aligning with established neurophysiological markers of ADHD. The results suggest that this approach holds significant potential for developing a reliable and objective diagnostic tool for ADHD, facilitating earlier and more personalized interventions.</p>","PeriodicalId":8047,"journal":{"name":"Applied Neuropsychology: Child","volume":" ","pages":"1-11"},"PeriodicalIF":1.1000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wavelet-Attention deep model for pediatric ADHD diagnosis via EEG.\",\"authors\":\"Babak Masoudi\",\"doi\":\"10.1080/21622965.2025.2535017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Attention-deficit/hyperactivity disorder (ADHD) is a prevalent neurodevelopmental disorder in children, impacting academic performance, social interactions, and overall well-being. Early and accurate diagnosis is crucial, yet current methods rely heavily on subjective assessments. This study presents a novel Wavelet-Attention deep model for objective ADHD diagnosis using electroencephalography signals. The model integrates a wavelet transform for feature extraction with a deep residual network (ResNet) augmented by an attention mechanism to enhance focus on salient features. Rigorous preprocessing, including Independent Component Analysis for artifact removal, was applied to a publicly available dataset of 121 children. To ensure a robust and clinically relevant evaluation that avoids data leakage, a strict Leave-One-Subject-Out cross-validation protocol was employed. The proposed model demonstrated strong diagnostic performance, achieving an accuracy of 96.69%, a sensitivity of 95.08%, and a specificity of 98.33% in distinguishing between children with ADHD and healthy controls. Furthermore, model-agnostic interpretability analysis revealed that features derived from frontal lobe channels and low-frequency wavelet coefficients were most critical for the model's decisions, aligning with established neurophysiological markers of ADHD. The results suggest that this approach holds significant potential for developing a reliable and objective diagnostic tool for ADHD, facilitating earlier and more personalized interventions.</p>\",\"PeriodicalId\":8047,\"journal\":{\"name\":\"Applied Neuropsychology: Child\",\"volume\":\" \",\"pages\":\"1-11\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Neuropsychology: Child\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1080/21622965.2025.2535017\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Neuropsychology: Child","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1080/21622965.2025.2535017","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

注意缺陷/多动障碍(ADHD)是儿童中普遍存在的神经发育障碍,影响学习成绩、社会交往和整体幸福感。早期和准确的诊断是至关重要的,但目前的方法严重依赖于主观评估。本研究提出了一种新的小波-注意深度模型,用于脑电图信号的ADHD客观诊断。该模型将用于特征提取的小波变换与增强了注意机制的深度残差网络(ResNet)相结合,以增强对显著特征的关注。严格的预处理,包括去除人工制品的独立成分分析,应用于121个儿童的公开数据集。为了确保稳健和临床相关的评估,避免数据泄露,采用了严格的“留一个受试者”交叉验证方案。该模型具有较强的诊断性能,在区分ADHD儿童和健康对照组方面,准确率为96.69%,灵敏度为95.08%,特异性为98.33%。此外,与模型无关的可解释性分析显示,来自额叶通道和低频小波系数的特征对模型的决策最为关键,与已建立的ADHD神经生理标志物一致。结果表明,这种方法在开发一种可靠和客观的ADHD诊断工具方面具有巨大的潜力,可以促进早期和更个性化的干预。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wavelet-Attention deep model for pediatric ADHD diagnosis via EEG.

Attention-deficit/hyperactivity disorder (ADHD) is a prevalent neurodevelopmental disorder in children, impacting academic performance, social interactions, and overall well-being. Early and accurate diagnosis is crucial, yet current methods rely heavily on subjective assessments. This study presents a novel Wavelet-Attention deep model for objective ADHD diagnosis using electroencephalography signals. The model integrates a wavelet transform for feature extraction with a deep residual network (ResNet) augmented by an attention mechanism to enhance focus on salient features. Rigorous preprocessing, including Independent Component Analysis for artifact removal, was applied to a publicly available dataset of 121 children. To ensure a robust and clinically relevant evaluation that avoids data leakage, a strict Leave-One-Subject-Out cross-validation protocol was employed. The proposed model demonstrated strong diagnostic performance, achieving an accuracy of 96.69%, a sensitivity of 95.08%, and a specificity of 98.33% in distinguishing between children with ADHD and healthy controls. Furthermore, model-agnostic interpretability analysis revealed that features derived from frontal lobe channels and low-frequency wavelet coefficients were most critical for the model's decisions, aligning with established neurophysiological markers of ADHD. The results suggest that this approach holds significant potential for developing a reliable and objective diagnostic tool for ADHD, facilitating earlier and more personalized interventions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Neuropsychology: Child
Applied Neuropsychology: Child CLINICAL NEUROLOGY-PSYCHOLOGY
CiteScore
4.00
自引率
5.90%
发文量
47
期刊介绍: Applied Neuropsychology: Child publishes clinical neuropsychological articles concerning assessment, brain functioning and neuroimaging, neuropsychological treatment, and rehabilitation in children. Full-length articles and brief communications are included. Case studies of child patients carefully assessing the nature, course, or treatment of clinical neuropsychological dysfunctions in the context of scientific literature, are suitable. Review manuscripts addressing critical issues are encouraged. Preference is given to papers of clinical relevance to others in the field. All submitted manuscripts are subject to initial appraisal by the Editor-in-Chief, and, if found suitable for further considerations are peer reviewed by independent, anonymous expert referees. All peer review is single-blind and submission is online via ScholarOne Manuscripts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信