{"title":"小波-注意深度模型在小儿多动症脑电诊断中的应用。","authors":"Babak Masoudi","doi":"10.1080/21622965.2025.2535017","DOIUrl":null,"url":null,"abstract":"<p><p>Attention-deficit/hyperactivity disorder (ADHD) is a prevalent neurodevelopmental disorder in children, impacting academic performance, social interactions, and overall well-being. Early and accurate diagnosis is crucial, yet current methods rely heavily on subjective assessments. This study presents a novel Wavelet-Attention deep model for objective ADHD diagnosis using electroencephalography signals. The model integrates a wavelet transform for feature extraction with a deep residual network (ResNet) augmented by an attention mechanism to enhance focus on salient features. Rigorous preprocessing, including Independent Component Analysis for artifact removal, was applied to a publicly available dataset of 121 children. To ensure a robust and clinically relevant evaluation that avoids data leakage, a strict Leave-One-Subject-Out cross-validation protocol was employed. The proposed model demonstrated strong diagnostic performance, achieving an accuracy of 96.69%, a sensitivity of 95.08%, and a specificity of 98.33% in distinguishing between children with ADHD and healthy controls. Furthermore, model-agnostic interpretability analysis revealed that features derived from frontal lobe channels and low-frequency wavelet coefficients were most critical for the model's decisions, aligning with established neurophysiological markers of ADHD. The results suggest that this approach holds significant potential for developing a reliable and objective diagnostic tool for ADHD, facilitating earlier and more personalized interventions.</p>","PeriodicalId":8047,"journal":{"name":"Applied Neuropsychology: Child","volume":" ","pages":"1-11"},"PeriodicalIF":1.1000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wavelet-Attention deep model for pediatric ADHD diagnosis via EEG.\",\"authors\":\"Babak Masoudi\",\"doi\":\"10.1080/21622965.2025.2535017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Attention-deficit/hyperactivity disorder (ADHD) is a prevalent neurodevelopmental disorder in children, impacting academic performance, social interactions, and overall well-being. Early and accurate diagnosis is crucial, yet current methods rely heavily on subjective assessments. This study presents a novel Wavelet-Attention deep model for objective ADHD diagnosis using electroencephalography signals. The model integrates a wavelet transform for feature extraction with a deep residual network (ResNet) augmented by an attention mechanism to enhance focus on salient features. Rigorous preprocessing, including Independent Component Analysis for artifact removal, was applied to a publicly available dataset of 121 children. To ensure a robust and clinically relevant evaluation that avoids data leakage, a strict Leave-One-Subject-Out cross-validation protocol was employed. The proposed model demonstrated strong diagnostic performance, achieving an accuracy of 96.69%, a sensitivity of 95.08%, and a specificity of 98.33% in distinguishing between children with ADHD and healthy controls. Furthermore, model-agnostic interpretability analysis revealed that features derived from frontal lobe channels and low-frequency wavelet coefficients were most critical for the model's decisions, aligning with established neurophysiological markers of ADHD. The results suggest that this approach holds significant potential for developing a reliable and objective diagnostic tool for ADHD, facilitating earlier and more personalized interventions.</p>\",\"PeriodicalId\":8047,\"journal\":{\"name\":\"Applied Neuropsychology: Child\",\"volume\":\" \",\"pages\":\"1-11\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Neuropsychology: Child\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1080/21622965.2025.2535017\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Neuropsychology: Child","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1080/21622965.2025.2535017","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Wavelet-Attention deep model for pediatric ADHD diagnosis via EEG.
Attention-deficit/hyperactivity disorder (ADHD) is a prevalent neurodevelopmental disorder in children, impacting academic performance, social interactions, and overall well-being. Early and accurate diagnosis is crucial, yet current methods rely heavily on subjective assessments. This study presents a novel Wavelet-Attention deep model for objective ADHD diagnosis using electroencephalography signals. The model integrates a wavelet transform for feature extraction with a deep residual network (ResNet) augmented by an attention mechanism to enhance focus on salient features. Rigorous preprocessing, including Independent Component Analysis for artifact removal, was applied to a publicly available dataset of 121 children. To ensure a robust and clinically relevant evaluation that avoids data leakage, a strict Leave-One-Subject-Out cross-validation protocol was employed. The proposed model demonstrated strong diagnostic performance, achieving an accuracy of 96.69%, a sensitivity of 95.08%, and a specificity of 98.33% in distinguishing between children with ADHD and healthy controls. Furthermore, model-agnostic interpretability analysis revealed that features derived from frontal lobe channels and low-frequency wavelet coefficients were most critical for the model's decisions, aligning with established neurophysiological markers of ADHD. The results suggest that this approach holds significant potential for developing a reliable and objective diagnostic tool for ADHD, facilitating earlier and more personalized interventions.
期刊介绍:
Applied Neuropsychology: Child publishes clinical neuropsychological articles concerning assessment, brain functioning and neuroimaging, neuropsychological treatment, and rehabilitation in children. Full-length articles and brief communications are included. Case studies of child patients carefully assessing the nature, course, or treatment of clinical neuropsychological dysfunctions in the context of scientific literature, are suitable. Review manuscripts addressing critical issues are encouraged. Preference is given to papers of clinical relevance to others in the field. All submitted manuscripts are subject to initial appraisal by the Editor-in-Chief, and, if found suitable for further considerations are peer reviewed by independent, anonymous expert referees. All peer review is single-blind and submission is online via ScholarOne Manuscripts.