Mengzhao Feng , Qi Qin , Kaiyuan Zhang , Fang Wang , Dengpan Song , Mengyuan Li , Yuan An , Zhihua Li , Fuyou Guo
{"title":"Sphk2在缺血性卒中发病机制中的作用、机制和调控策略","authors":"Mengzhao Feng , Qi Qin , Kaiyuan Zhang , Fang Wang , Dengpan Song , Mengyuan Li , Yuan An , Zhihua Li , Fuyou Guo","doi":"10.1016/j.arr.2025.102844","DOIUrl":null,"url":null,"abstract":"<div><div>Ischemic stroke, a leading cause of mortality and long-term disability worldwide, is characterized by acute cerebral artery occlusion leading to neuronal death and functional deficits. Despite advances in reperfusion therapies, the lack of effective neuroprotective agents underscores the need for novel therapeutic strategies targeting secondary injury mechanisms. Sphingosine kinase 2 (Sphk2) has emerged as a pivotal regulator in ischemic stroke pathogenesis, mitigating blood-brain barrier leakage, neuroinflammation, and neuronal survival through its downstream metabolite, sphingosine-1-phosphate. This review comprehensively examines the roles and mechanisms of Sphk2 in ischemic stroke, highlighting its potential in anti-inflammation and neuroprotection. We discuss current therapeutic approaches targeting Sphk2, including pharmacological activation, natural compounds and gene therapy. Future directions focus on developing Sphk2-specific agonists, optimizing delivery strategies, and exploring cell type-specific adeno-associated virus vectors and engineered exosomes modulation to maximize therapeutic efficacy while minimizing off-target effects. By synthesizing current knowledge and identifying gaps, this review provides a roadmap for harnessing Sphk2 as a therapeutic target to improve stroke outcomes.</div></div>","PeriodicalId":55545,"journal":{"name":"Ageing Research Reviews","volume":"111 ","pages":"Article 102844"},"PeriodicalIF":12.4000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sphk2 in ischemic stroke pathogenesis: Roles, mechanisms, and regulation strategies\",\"authors\":\"Mengzhao Feng , Qi Qin , Kaiyuan Zhang , Fang Wang , Dengpan Song , Mengyuan Li , Yuan An , Zhihua Li , Fuyou Guo\",\"doi\":\"10.1016/j.arr.2025.102844\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Ischemic stroke, a leading cause of mortality and long-term disability worldwide, is characterized by acute cerebral artery occlusion leading to neuronal death and functional deficits. Despite advances in reperfusion therapies, the lack of effective neuroprotective agents underscores the need for novel therapeutic strategies targeting secondary injury mechanisms. Sphingosine kinase 2 (Sphk2) has emerged as a pivotal regulator in ischemic stroke pathogenesis, mitigating blood-brain barrier leakage, neuroinflammation, and neuronal survival through its downstream metabolite, sphingosine-1-phosphate. This review comprehensively examines the roles and mechanisms of Sphk2 in ischemic stroke, highlighting its potential in anti-inflammation and neuroprotection. We discuss current therapeutic approaches targeting Sphk2, including pharmacological activation, natural compounds and gene therapy. Future directions focus on developing Sphk2-specific agonists, optimizing delivery strategies, and exploring cell type-specific adeno-associated virus vectors and engineered exosomes modulation to maximize therapeutic efficacy while minimizing off-target effects. By synthesizing current knowledge and identifying gaps, this review provides a roadmap for harnessing Sphk2 as a therapeutic target to improve stroke outcomes.</div></div>\",\"PeriodicalId\":55545,\"journal\":{\"name\":\"Ageing Research Reviews\",\"volume\":\"111 \",\"pages\":\"Article 102844\"},\"PeriodicalIF\":12.4000,\"publicationDate\":\"2025-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ageing Research Reviews\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1568163725001904\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ageing Research Reviews","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568163725001904","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Sphk2 in ischemic stroke pathogenesis: Roles, mechanisms, and regulation strategies
Ischemic stroke, a leading cause of mortality and long-term disability worldwide, is characterized by acute cerebral artery occlusion leading to neuronal death and functional deficits. Despite advances in reperfusion therapies, the lack of effective neuroprotective agents underscores the need for novel therapeutic strategies targeting secondary injury mechanisms. Sphingosine kinase 2 (Sphk2) has emerged as a pivotal regulator in ischemic stroke pathogenesis, mitigating blood-brain barrier leakage, neuroinflammation, and neuronal survival through its downstream metabolite, sphingosine-1-phosphate. This review comprehensively examines the roles and mechanisms of Sphk2 in ischemic stroke, highlighting its potential in anti-inflammation and neuroprotection. We discuss current therapeutic approaches targeting Sphk2, including pharmacological activation, natural compounds and gene therapy. Future directions focus on developing Sphk2-specific agonists, optimizing delivery strategies, and exploring cell type-specific adeno-associated virus vectors and engineered exosomes modulation to maximize therapeutic efficacy while minimizing off-target effects. By synthesizing current knowledge and identifying gaps, this review provides a roadmap for harnessing Sphk2 as a therapeutic target to improve stroke outcomes.
期刊介绍:
With the rise in average human life expectancy, the impact of ageing and age-related diseases on our society has become increasingly significant. Ageing research is now a focal point for numerous laboratories, encompassing leaders in genetics, molecular and cellular biology, biochemistry, and behavior. Ageing Research Reviews (ARR) serves as a cornerstone in this field, addressing emerging trends.
ARR aims to fill a substantial gap by providing critical reviews and viewpoints on evolving discoveries concerning the mechanisms of ageing and age-related diseases. The rapid progress in understanding the mechanisms controlling cellular proliferation, differentiation, and survival is unveiling new insights into the regulation of ageing. From telomerase to stem cells, and from energy to oxyradical metabolism, we are witnessing an exciting era in the multidisciplinary field of ageing research.
The journal explores the cellular and molecular foundations of interventions that extend lifespan, such as caloric restriction. It identifies the underpinnings of manipulations that extend lifespan, shedding light on novel approaches for preventing age-related diseases. ARR publishes articles on focused topics selected from the expansive field of ageing research, with a particular emphasis on the cellular and molecular mechanisms of the aging process. This includes age-related diseases like cancer, cardiovascular disease, diabetes, and neurodegenerative disorders. The journal also covers applications of basic ageing research to lifespan extension and disease prevention, offering a comprehensive platform for advancing our understanding of this critical field.