{"title":"使用结构光模拟和基于机器学习的覆盖预测生成扫描点云","authors":"Tingcheng Li , Ruding Lou , Arnaud Polette , Manon Jubert , Dominique Nozais , Jean-Philippe Pernot","doi":"10.1016/j.advengsoft.2025.103996","DOIUrl":null,"url":null,"abstract":"<div><div>Although several methods have been proposed for generating as-scanned point clouds, i.e. point clouds incorporating various realistic artefacts that would appear if the corresponding real objects were digitized for real, most of them still fail to take into account the complex phenomena that occur in a real acquisition devices. This paper presents a new way of artificially generating point clouds by combining simulation and machine learning. Starting from the CAD model of the object to be virtually scanned and from a scan configuration, structured light simulation first allows reconstructing a preliminary 3D point cloud. Then, a coverage prediction network is used to predict the regions that would be acquired if a real acquisition was to be done. The prediction model has been trained from a large database of scan configurations and point clouds scanned for real. Finally, filtering and cropping are performed to fine-tune the generated point cloud. Experiments confirm that this method can generate point clouds very close to those that a real scanner would acquire, as shown by several metrics characterizing both local and global similarity. Such a virtual scanning technique enables the rapid generation of large quantities of realistic point clouds, especially when compared to the time-consuming and costly processes involved in using physical acquisition systems. This opens up new perspectives in terms of access to realistic point cloud databases, in particular for the development of various AI-based approaches.</div></div>","PeriodicalId":50866,"journal":{"name":"Advances in Engineering Software","volume":"209 ","pages":"Article 103996"},"PeriodicalIF":5.7000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"As-scanned point cloud generation using structured-light simulation and machine learning-based coverage prediction\",\"authors\":\"Tingcheng Li , Ruding Lou , Arnaud Polette , Manon Jubert , Dominique Nozais , Jean-Philippe Pernot\",\"doi\":\"10.1016/j.advengsoft.2025.103996\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Although several methods have been proposed for generating as-scanned point clouds, i.e. point clouds incorporating various realistic artefacts that would appear if the corresponding real objects were digitized for real, most of them still fail to take into account the complex phenomena that occur in a real acquisition devices. This paper presents a new way of artificially generating point clouds by combining simulation and machine learning. Starting from the CAD model of the object to be virtually scanned and from a scan configuration, structured light simulation first allows reconstructing a preliminary 3D point cloud. Then, a coverage prediction network is used to predict the regions that would be acquired if a real acquisition was to be done. The prediction model has been trained from a large database of scan configurations and point clouds scanned for real. Finally, filtering and cropping are performed to fine-tune the generated point cloud. Experiments confirm that this method can generate point clouds very close to those that a real scanner would acquire, as shown by several metrics characterizing both local and global similarity. Such a virtual scanning technique enables the rapid generation of large quantities of realistic point clouds, especially when compared to the time-consuming and costly processes involved in using physical acquisition systems. This opens up new perspectives in terms of access to realistic point cloud databases, in particular for the development of various AI-based approaches.</div></div>\",\"PeriodicalId\":50866,\"journal\":{\"name\":\"Advances in Engineering Software\",\"volume\":\"209 \",\"pages\":\"Article 103996\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Engineering Software\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0965997825001346\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Engineering Software","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0965997825001346","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
As-scanned point cloud generation using structured-light simulation and machine learning-based coverage prediction
Although several methods have been proposed for generating as-scanned point clouds, i.e. point clouds incorporating various realistic artefacts that would appear if the corresponding real objects were digitized for real, most of them still fail to take into account the complex phenomena that occur in a real acquisition devices. This paper presents a new way of artificially generating point clouds by combining simulation and machine learning. Starting from the CAD model of the object to be virtually scanned and from a scan configuration, structured light simulation first allows reconstructing a preliminary 3D point cloud. Then, a coverage prediction network is used to predict the regions that would be acquired if a real acquisition was to be done. The prediction model has been trained from a large database of scan configurations and point clouds scanned for real. Finally, filtering and cropping are performed to fine-tune the generated point cloud. Experiments confirm that this method can generate point clouds very close to those that a real scanner would acquire, as shown by several metrics characterizing both local and global similarity. Such a virtual scanning technique enables the rapid generation of large quantities of realistic point clouds, especially when compared to the time-consuming and costly processes involved in using physical acquisition systems. This opens up new perspectives in terms of access to realistic point cloud databases, in particular for the development of various AI-based approaches.
期刊介绍:
The objective of this journal is to communicate recent and projected advances in computer-based engineering techniques. The fields covered include mechanical, aerospace, civil and environmental engineering, with an emphasis on research and development leading to practical problem-solving.
The scope of the journal includes:
• Innovative computational strategies and numerical algorithms for large-scale engineering problems
• Analysis and simulation techniques and systems
• Model and mesh generation
• Control of the accuracy, stability and efficiency of computational process
• Exploitation of new computing environments (eg distributed hetergeneous and collaborative computing)
• Advanced visualization techniques, virtual environments and prototyping
• Applications of AI, knowledge-based systems, computational intelligence, including fuzzy logic, neural networks and evolutionary computations
• Application of object-oriented technology to engineering problems
• Intelligent human computer interfaces
• Design automation, multidisciplinary design and optimization
• CAD, CAE and integrated process and product development systems
• Quality and reliability.