基于机器学习预测模型的掺杂sn - ta - o垂直石墨烯电化学传感器用于监测饮料中的镉

IF 9.8 1区 农林科学 Q1 CHEMISTRY, APPLIED
Zhiyu Tao , Lin Su , Mingji Li , Xiuwei Xuan , Cuiping Li , Hongji Li
{"title":"基于机器学习预测模型的掺杂sn - ta - o垂直石墨烯电化学传感器用于监测饮料中的镉","authors":"Zhiyu Tao ,&nbsp;Lin Su ,&nbsp;Mingji Li ,&nbsp;Xiuwei Xuan ,&nbsp;Cuiping Li ,&nbsp;Hongji Li","doi":"10.1016/j.foodchem.2025.145744","DOIUrl":null,"url":null,"abstract":"<div><div>The growing diversity of beverages intensifies demand for on-site heavy metal detection to ensure safety. Multi-heteroatom co-doped graphene electrodes exhibit superior electrocatalytic activity and stability over traditional carbon-based electrodes, enabling their application in machine learning (ML)-assisted real-time Cd<sup>2+</sup> detection. An industrial manufacturing process combining physical and chemical vapor deposition was employed to fabricate novel tin(Sn)‑tantalum(Ta)‑oxygen(O)-doped vertical graphene (VG) (STO-VG) electrodes with uniform surface properties. STO-VG sensors combined traditional linear regression with ML prediction models for real-time Cd<sup>2+</sup> detection in samples. The sensor exhibits a wide detection range (0.1–200 μM), low detection limit (S/N = 3; 1.80 nM), and excellent long-term stability. Furthermore, the sensor demonstrated excellent recovery (95.6 %–105.2 %) and reliability for the real-time monitoring of Cd<sup>2+</sup> in various beverages. This study provides a stable STO-VG sensor and an efficient (ML)-based strategy for the on-site real-time determination of Cd<sup>2+</sup>.</div></div>","PeriodicalId":318,"journal":{"name":"Food Chemistry","volume":"493 ","pages":"Article 145744"},"PeriodicalIF":9.8000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Sn-Ta-O-doped vertical graphene electrochemical sensor based on a machine learning prediction model for monitoring cadmium in beverages\",\"authors\":\"Zhiyu Tao ,&nbsp;Lin Su ,&nbsp;Mingji Li ,&nbsp;Xiuwei Xuan ,&nbsp;Cuiping Li ,&nbsp;Hongji Li\",\"doi\":\"10.1016/j.foodchem.2025.145744\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The growing diversity of beverages intensifies demand for on-site heavy metal detection to ensure safety. Multi-heteroatom co-doped graphene electrodes exhibit superior electrocatalytic activity and stability over traditional carbon-based electrodes, enabling their application in machine learning (ML)-assisted real-time Cd<sup>2+</sup> detection. An industrial manufacturing process combining physical and chemical vapor deposition was employed to fabricate novel tin(Sn)‑tantalum(Ta)‑oxygen(O)-doped vertical graphene (VG) (STO-VG) electrodes with uniform surface properties. STO-VG sensors combined traditional linear regression with ML prediction models for real-time Cd<sup>2+</sup> detection in samples. The sensor exhibits a wide detection range (0.1–200 μM), low detection limit (S/N = 3; 1.80 nM), and excellent long-term stability. Furthermore, the sensor demonstrated excellent recovery (95.6 %–105.2 %) and reliability for the real-time monitoring of Cd<sup>2+</sup> in various beverages. This study provides a stable STO-VG sensor and an efficient (ML)-based strategy for the on-site real-time determination of Cd<sup>2+</sup>.</div></div>\",\"PeriodicalId\":318,\"journal\":{\"name\":\"Food Chemistry\",\"volume\":\"493 \",\"pages\":\"Article 145744\"},\"PeriodicalIF\":9.8000,\"publicationDate\":\"2025-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Chemistry\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0308814625029954\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0308814625029954","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

随着饮料种类的日益多样化,为确保安全,对现场重金属检测的需求日益增加。与传统的碳基电极相比,多杂原子共掺杂石墨烯电极表现出优越的电催化活性和稳定性,使其能够应用于机器学习(ML)辅助的实时Cd2+检测。采用物理和化学气相沉积相结合的工业制造工艺,制备了具有均匀表面性能的新型锡(Sn) -钽(Ta) -氧(O)掺杂垂直石墨烯(STO-VG)电极。STO-VG传感器将传统的线性回归与ML预测模型相结合,实时检测样品中的Cd2+。该传感器检测范围宽(0.1 ~ 200 μM),检测限低(S/N = 3;1.80 nM),长期稳定性极佳。此外,该传感器具有良好的回收率(95.6% % -105.2 %)和可靠的实时监测各种饮料中的Cd2+。本研究提供了一种稳定的STO-VG传感器和一种高效的基于ML的Cd2+现场实时测定策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Sn-Ta-O-doped vertical graphene electrochemical sensor based on a machine learning prediction model for monitoring cadmium in beverages

A Sn-Ta-O-doped vertical graphene electrochemical sensor based on a machine learning prediction model for monitoring cadmium in beverages

A Sn-Ta-O-doped vertical graphene electrochemical sensor based on a machine learning prediction model for monitoring cadmium in beverages
The growing diversity of beverages intensifies demand for on-site heavy metal detection to ensure safety. Multi-heteroatom co-doped graphene electrodes exhibit superior electrocatalytic activity and stability over traditional carbon-based electrodes, enabling their application in machine learning (ML)-assisted real-time Cd2+ detection. An industrial manufacturing process combining physical and chemical vapor deposition was employed to fabricate novel tin(Sn)‑tantalum(Ta)‑oxygen(O)-doped vertical graphene (VG) (STO-VG) electrodes with uniform surface properties. STO-VG sensors combined traditional linear regression with ML prediction models for real-time Cd2+ detection in samples. The sensor exhibits a wide detection range (0.1–200 μM), low detection limit (S/N = 3; 1.80 nM), and excellent long-term stability. Furthermore, the sensor demonstrated excellent recovery (95.6 %–105.2 %) and reliability for the real-time monitoring of Cd2+ in various beverages. This study provides a stable STO-VG sensor and an efficient (ML)-based strategy for the on-site real-time determination of Cd2+.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Food Chemistry
Food Chemistry 工程技术-食品科技
CiteScore
16.30
自引率
10.20%
发文量
3130
审稿时长
122 days
期刊介绍: Food Chemistry publishes original research papers dealing with the advancement of the chemistry and biochemistry of foods or the analytical methods/ approach used. All papers should focus on the novelty of the research carried out.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信