烤羊肉中多环芳烃分析的机器学习:来自光谱和化学数据的新见解

IF 9.8 1区 农林科学 Q1 CHEMISTRY, APPLIED
Jie Hao , Jiarui Cui , Sijia Liu , Yu Lv , Zhongxiong Zhang , Songlei Wang
{"title":"烤羊肉中多环芳烃分析的机器学习:来自光谱和化学数据的新见解","authors":"Jie Hao ,&nbsp;Jiarui Cui ,&nbsp;Sijia Liu ,&nbsp;Yu Lv ,&nbsp;Zhongxiong Zhang ,&nbsp;Songlei Wang","doi":"10.1016/j.foodchem.2025.145727","DOIUrl":null,"url":null,"abstract":"<div><div>Polycyclic aromatic hydrocarbons (PAHs) generated during lamb roasting pose health risks but are difficult to predict due to their low concentrations and complex features. Existing models fail to address data scarcity and low-concentration prediction accuracy in PAHs analysis. A comprehensive PAHs index (CPI) derived via entropy weighting method (EWM) combined with auto-encoders and generative adversarial networks (AE-GAN), may overcome these limitations. We integrated EWM with AE-GAN (for synthetic data augmentation) and developed prediction models using partial least squares regression (PLSR), convolutional neural network (CNN) and Bayesian echo state network (Bayes-ESN). When epoch = 3000 and increasing the amount of data by 750, the Bayes-ESN model worked the best (R<sub>P</sub><sup>2</sup> = 0.8238), demonstrating AE-GAN's efficacy in mitigating data scarcity. The combination of EWM, AE-GAN and Bayes-ESN provides a robust solution for predicting the levels of PAHs in roasted meat, advancing food safety control through enhanced generative-regression synergy.</div></div>","PeriodicalId":318,"journal":{"name":"Food Chemistry","volume":"493 ","pages":"Article 145727"},"PeriodicalIF":9.8000,"publicationDate":"2025-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning for polycyclic aromatic hydrocarbons analysis in roasted lamb: new insights from spectral and chemical data\",\"authors\":\"Jie Hao ,&nbsp;Jiarui Cui ,&nbsp;Sijia Liu ,&nbsp;Yu Lv ,&nbsp;Zhongxiong Zhang ,&nbsp;Songlei Wang\",\"doi\":\"10.1016/j.foodchem.2025.145727\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Polycyclic aromatic hydrocarbons (PAHs) generated during lamb roasting pose health risks but are difficult to predict due to their low concentrations and complex features. Existing models fail to address data scarcity and low-concentration prediction accuracy in PAHs analysis. A comprehensive PAHs index (CPI) derived via entropy weighting method (EWM) combined with auto-encoders and generative adversarial networks (AE-GAN), may overcome these limitations. We integrated EWM with AE-GAN (for synthetic data augmentation) and developed prediction models using partial least squares regression (PLSR), convolutional neural network (CNN) and Bayesian echo state network (Bayes-ESN). When epoch = 3000 and increasing the amount of data by 750, the Bayes-ESN model worked the best (R<sub>P</sub><sup>2</sup> = 0.8238), demonstrating AE-GAN's efficacy in mitigating data scarcity. The combination of EWM, AE-GAN and Bayes-ESN provides a robust solution for predicting the levels of PAHs in roasted meat, advancing food safety control through enhanced generative-regression synergy.</div></div>\",\"PeriodicalId\":318,\"journal\":{\"name\":\"Food Chemistry\",\"volume\":\"493 \",\"pages\":\"Article 145727\"},\"PeriodicalIF\":9.8000,\"publicationDate\":\"2025-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Chemistry\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0308814625029784\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0308814625029784","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

烤羊肉过程中产生的多环芳烃(PAHs)存在健康风险,但由于其浓度低且性质复杂,难以预测。现有模型未能解决多环芳烃分析中数据稀缺和浓度预测精度低的问题。综合多环芳烃指数(CPI)通过熵加权法(EWM)结合自编码器和生成对抗网络(AE-GAN),可能克服这些限制。我们将EWM与AE-GAN(用于合成数据增强)相结合,并使用偏最小二乘回归(PLSR)、卷积神经网络(CNN)和贝叶斯回声状态网络(Bayes-ESN)建立了预测模型。当epoch = 3000,数据量增加750时,贝叶斯回声状态网络模型效果最佳(RP2 = 0.8238),表明AE-GAN在缓解数据稀缺性方面的有效性。EWM、AE-GAN和Bayes-ESN的结合为预测烤肉中多环芳烃的水平提供了一个强大的解决方案,通过增强的生成-回归协同作用推进食品安全控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine learning for polycyclic aromatic hydrocarbons analysis in roasted lamb: new insights from spectral and chemical data
Polycyclic aromatic hydrocarbons (PAHs) generated during lamb roasting pose health risks but are difficult to predict due to their low concentrations and complex features. Existing models fail to address data scarcity and low-concentration prediction accuracy in PAHs analysis. A comprehensive PAHs index (CPI) derived via entropy weighting method (EWM) combined with auto-encoders and generative adversarial networks (AE-GAN), may overcome these limitations. We integrated EWM with AE-GAN (for synthetic data augmentation) and developed prediction models using partial least squares regression (PLSR), convolutional neural network (CNN) and Bayesian echo state network (Bayes-ESN). When epoch = 3000 and increasing the amount of data by 750, the Bayes-ESN model worked the best (RP2 = 0.8238), demonstrating AE-GAN's efficacy in mitigating data scarcity. The combination of EWM, AE-GAN and Bayes-ESN provides a robust solution for predicting the levels of PAHs in roasted meat, advancing food safety control through enhanced generative-regression synergy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Food Chemistry
Food Chemistry 工程技术-食品科技
CiteScore
16.30
自引率
10.20%
发文量
3130
审稿时长
122 days
期刊介绍: Food Chemistry publishes original research papers dealing with the advancement of the chemistry and biochemistry of foods or the analytical methods/ approach used. All papers should focus on the novelty of the research carried out.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信