具有挥发性模拟Pt/C/NbOx/TiN忆阻器的无电容神经元

IF 4.5 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Wenbin Guo;Hong Huang;Zhe Feng;Jianxun Zou;Zhihao Lin;Zuyu Xu;Yunlai Zhu;Yuehua Dai;Zuheng Wu
{"title":"具有挥发性模拟Pt/C/NbOx/TiN忆阻器的无电容神经元","authors":"Wenbin Guo;Hong Huang;Zhe Feng;Jianxun Zou;Zhihao Lin;Zuyu Xu;Yunlai Zhu;Yuehua Dai;Zuheng Wu","doi":"10.1109/LED.2025.3581554","DOIUrl":null,"url":null,"abstract":"Artificial neurons, as key components for implementing spiking neural networks (SNNs), are essential for neuromorphic systems to achieve efficient decision-making. Yet, conventional implementations require bulky capacitors or reset circuits that limit integration density and reliability. In this work, a capacitorless artificial neuron based on volatile analogue Pt/C/NbO<inline-formula> <tex-math>${}_{\\boldsymbol {x}}$ </tex-math></inline-formula>/TiN memristor is demonstrated, featuring highly uniform characteristics, excellent linear response, and fast relaxation process. The device inherently enables basic integration and leakage functions without additional capacitors. The neuron parameters can be flexibly adjusted by finely modulating input pulses to support different application scenarios. Furthermore, we constructed a two-layer SNN using time-to-first-spike (TTFS) coding, achieving about 98.9% accuracy on the MNIST dataset while reducing the average spike count by 93.8% compared to rate coding. The proposed scheme demonstrates great potential for achieving efficient and flexible neuromorphic systems.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"46 8","pages":"1425-1428"},"PeriodicalIF":4.5000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Capacitorless Neuron With Volatile Analog Pt/C/NbOx/TiN Memristor\",\"authors\":\"Wenbin Guo;Hong Huang;Zhe Feng;Jianxun Zou;Zhihao Lin;Zuyu Xu;Yunlai Zhu;Yuehua Dai;Zuheng Wu\",\"doi\":\"10.1109/LED.2025.3581554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Artificial neurons, as key components for implementing spiking neural networks (SNNs), are essential for neuromorphic systems to achieve efficient decision-making. Yet, conventional implementations require bulky capacitors or reset circuits that limit integration density and reliability. In this work, a capacitorless artificial neuron based on volatile analogue Pt/C/NbO<inline-formula> <tex-math>${}_{\\\\boldsymbol {x}}$ </tex-math></inline-formula>/TiN memristor is demonstrated, featuring highly uniform characteristics, excellent linear response, and fast relaxation process. The device inherently enables basic integration and leakage functions without additional capacitors. The neuron parameters can be flexibly adjusted by finely modulating input pulses to support different application scenarios. Furthermore, we constructed a two-layer SNN using time-to-first-spike (TTFS) coding, achieving about 98.9% accuracy on the MNIST dataset while reducing the average spike count by 93.8% compared to rate coding. The proposed scheme demonstrates great potential for achieving efficient and flexible neuromorphic systems.\",\"PeriodicalId\":13198,\"journal\":{\"name\":\"IEEE Electron Device Letters\",\"volume\":\"46 8\",\"pages\":\"1425-1428\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Electron Device Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11045701/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Electron Device Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11045701/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

人工神经元是实现峰值神经网络(snn)的关键组成部分,是神经形态系统实现高效决策的必要条件。然而,传统的实现需要笨重的电容器或复位电路,限制了集成密度和可靠性。本文提出了一种基于挥发性模拟Pt/C/NbO ${}_{\boldsymbol {x}}$ /TiN记忆电阻器的无电容人工神经元,具有高度均匀的特性、良好的线性响应和快速的弛缓过程。该装置本身无需额外的电容器即可实现基本的集成和泄漏功能。通过精细调制输入脉冲,可以灵活调整神经元参数,以支持不同的应用场景。此外,我们使用TTFS编码构建了一个双层SNN,在MNIST数据集上实现了98.9%的准确率,同时与率编码相比,平均峰值计数减少了93.8%。所提出的方案显示了实现高效和灵活的神经形态系统的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Capacitorless Neuron With Volatile Analog Pt/C/NbOx/TiN Memristor
Artificial neurons, as key components for implementing spiking neural networks (SNNs), are essential for neuromorphic systems to achieve efficient decision-making. Yet, conventional implementations require bulky capacitors or reset circuits that limit integration density and reliability. In this work, a capacitorless artificial neuron based on volatile analogue Pt/C/NbO ${}_{\boldsymbol {x}}$ /TiN memristor is demonstrated, featuring highly uniform characteristics, excellent linear response, and fast relaxation process. The device inherently enables basic integration and leakage functions without additional capacitors. The neuron parameters can be flexibly adjusted by finely modulating input pulses to support different application scenarios. Furthermore, we constructed a two-layer SNN using time-to-first-spike (TTFS) coding, achieving about 98.9% accuracy on the MNIST dataset while reducing the average spike count by 93.8% compared to rate coding. The proposed scheme demonstrates great potential for achieving efficient and flexible neuromorphic systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Electron Device Letters
IEEE Electron Device Letters 工程技术-工程:电子与电气
CiteScore
8.20
自引率
10.20%
发文量
551
审稿时长
1.4 months
期刊介绍: IEEE Electron Device Letters publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信