{"title":"敏感棘球绦虫诱导胶质母细胞瘤中铁下垂的分子机制。","authors":"Xin Song, Yuhui Li, Yufeng Li, Jingwu Li, Dan Li, Xuekun Kou, Yongliang Liu, Zhaobin Xing","doi":"10.1002/pca.70013","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Eleutherococcus senticosus, a traditional Chinese medicine, has shown potential in treating glioblastoma (GBM). However, its main active components and mechanisms of action remain unclear.</p><p><strong>Objective: </strong>This study aimed to evaluate the inhibitory effects of E. senticosus on GBM cell proliferation and migration using in vitro cellular experiments.</p><p><strong>Methods: </strong>Transcriptome sequencing and metabolome analysis were performed on GBM cells treated with E. senticosus. Network pharmacology and correlation analysis identified the main active components and their targets, which were further verified using molecular biology experiments. Electrophoretic mobility shift assays and molecular docking analyses were used to analyze the binding ability and mechanisms of action of transcription factors and promoters.</p><p><strong>Results: </strong>E. senticosus significantly inhibited GBM cell proliferation and migration. Treatment with E. senticosus caused significant changes in ferroptosis-related genes and metabolites in GBM cells, significantly reducing the levels of glutathione, an antagonist of ferroptosis, and its synthetic substrates. GPX4, FTH1, and TFR1 were identified as core targets of ferroptosis induction in E. senticosus-induced GBM cells. Quercetin had similar biological effects on GBM cells as E. senticosus and is its main active component. E. senticosus and quercetin changed the binding ability of transcription factors SIX1 and MYBL2 to the promoters of GPX4, FTH1, and TFR1.</p><p><strong>Conclusion: </strong>E. senticosus changed the binding ability of SIX1, MYBL2, and promoters of target genes via quercetin, which led to changes in the expression of GPX4, FTH1, and TFR1, finally resulting in ferroptosis induction in GBM cells.</p>","PeriodicalId":20095,"journal":{"name":"Phytochemical Analysis","volume":" ","pages":"2065-2079"},"PeriodicalIF":2.6000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular Mechanisms of Ferroptosis Induced by Eleutherococcus senticosus in Glioblastoma.\",\"authors\":\"Xin Song, Yuhui Li, Yufeng Li, Jingwu Li, Dan Li, Xuekun Kou, Yongliang Liu, Zhaobin Xing\",\"doi\":\"10.1002/pca.70013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Eleutherococcus senticosus, a traditional Chinese medicine, has shown potential in treating glioblastoma (GBM). However, its main active components and mechanisms of action remain unclear.</p><p><strong>Objective: </strong>This study aimed to evaluate the inhibitory effects of E. senticosus on GBM cell proliferation and migration using in vitro cellular experiments.</p><p><strong>Methods: </strong>Transcriptome sequencing and metabolome analysis were performed on GBM cells treated with E. senticosus. Network pharmacology and correlation analysis identified the main active components and their targets, which were further verified using molecular biology experiments. Electrophoretic mobility shift assays and molecular docking analyses were used to analyze the binding ability and mechanisms of action of transcription factors and promoters.</p><p><strong>Results: </strong>E. senticosus significantly inhibited GBM cell proliferation and migration. Treatment with E. senticosus caused significant changes in ferroptosis-related genes and metabolites in GBM cells, significantly reducing the levels of glutathione, an antagonist of ferroptosis, and its synthetic substrates. GPX4, FTH1, and TFR1 were identified as core targets of ferroptosis induction in E. senticosus-induced GBM cells. Quercetin had similar biological effects on GBM cells as E. senticosus and is its main active component. E. senticosus and quercetin changed the binding ability of transcription factors SIX1 and MYBL2 to the promoters of GPX4, FTH1, and TFR1.</p><p><strong>Conclusion: </strong>E. senticosus changed the binding ability of SIX1, MYBL2, and promoters of target genes via quercetin, which led to changes in the expression of GPX4, FTH1, and TFR1, finally resulting in ferroptosis induction in GBM cells.</p>\",\"PeriodicalId\":20095,\"journal\":{\"name\":\"Phytochemical Analysis\",\"volume\":\" \",\"pages\":\"2065-2079\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Phytochemical Analysis\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/pca.70013\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytochemical Analysis","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pca.70013","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/24 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Molecular Mechanisms of Ferroptosis Induced by Eleutherococcus senticosus in Glioblastoma.
Introduction: Eleutherococcus senticosus, a traditional Chinese medicine, has shown potential in treating glioblastoma (GBM). However, its main active components and mechanisms of action remain unclear.
Objective: This study aimed to evaluate the inhibitory effects of E. senticosus on GBM cell proliferation and migration using in vitro cellular experiments.
Methods: Transcriptome sequencing and metabolome analysis were performed on GBM cells treated with E. senticosus. Network pharmacology and correlation analysis identified the main active components and their targets, which were further verified using molecular biology experiments. Electrophoretic mobility shift assays and molecular docking analyses were used to analyze the binding ability and mechanisms of action of transcription factors and promoters.
Results: E. senticosus significantly inhibited GBM cell proliferation and migration. Treatment with E. senticosus caused significant changes in ferroptosis-related genes and metabolites in GBM cells, significantly reducing the levels of glutathione, an antagonist of ferroptosis, and its synthetic substrates. GPX4, FTH1, and TFR1 were identified as core targets of ferroptosis induction in E. senticosus-induced GBM cells. Quercetin had similar biological effects on GBM cells as E. senticosus and is its main active component. E. senticosus and quercetin changed the binding ability of transcription factors SIX1 and MYBL2 to the promoters of GPX4, FTH1, and TFR1.
Conclusion: E. senticosus changed the binding ability of SIX1, MYBL2, and promoters of target genes via quercetin, which led to changes in the expression of GPX4, FTH1, and TFR1, finally resulting in ferroptosis induction in GBM cells.
期刊介绍:
Phytochemical Analysis is devoted to the publication of original articles concerning the development, improvement, validation and/or extension of application of analytical methodology in the plant sciences. The spectrum of coverage is broad, encompassing methods and techniques relevant to the detection (including bio-screening), extraction, separation, purification, identification and quantification of compounds in plant biochemistry, plant cellular and molecular biology, plant biotechnology, the food sciences, agriculture and horticulture. The Journal publishes papers describing significant novelty in the analysis of whole plants (including algae), plant cells, tissues and organs, plant-derived extracts and plant products (including those which have been partially or completely refined for use in the food, agrochemical, pharmaceutical and related industries). All forms of physical, chemical, biochemical, spectroscopic, radiometric, electrometric, chromatographic, metabolomic and chemometric investigations of plant products (monomeric species as well as polymeric molecules such as nucleic acids, proteins, lipids and carbohydrates) are included within the remit of the Journal. Papers dealing with novel methods relating to areas such as data handling/ data mining in plant sciences will also be welcomed.