Caitlyn A Thomas, John Paul Alao, Thomas Smisek, Zishuo Cheng, Christopher R Bethel, Kundi Yang, Ikponwmosa Obaseki, Richard C Page, Robert A Bonomo, Peter Oelschlaeger, Walter Fast, Andrea N Kravats, Michael W Crowder
{"title":"IMP金属β-内酰胺酶的临床变异对抑制剂的亲和力不同:对抑制剂设计的分析和影响","authors":"Caitlyn A Thomas, John Paul Alao, Thomas Smisek, Zishuo Cheng, Christopher R Bethel, Kundi Yang, Ikponwmosa Obaseki, Richard C Page, Robert A Bonomo, Peter Oelschlaeger, Walter Fast, Andrea N Kravats, Michael W Crowder","doi":"10.1021/acsinfecdis.5c00138","DOIUrl":null,"url":null,"abstract":"<p><p>β-Lactam-resistant bacterial infections are a serious concern worldwide. A common mechanism of β-lactam resistance is the expression of β-lactamases, which are capable of hydrolyzing the β-lactam bond in the most commonly used β-lactam antibiotics. Metallo-β-lactamases (MBLs) utilize 1 or 2 zinc ions for catalysis. One of the three most clinically relevant MBLs is Imipenemase (IMP). An important potential way to combat MBLs is to use an inhibitor in combination with an existing β-lactam drug. The current study investigates the mechanism of inhibition of preclinical boronic acid β-lactamase inhibitor RPX 7546 and mercaptomethyl bisthiazolidine D-CS319, which are two previously reported MBL inhibitors, with IMP-1 and its variant IMP-78 (V67F/S262G), chosen due to its improved efficiency hydrolyzing carbapenem β-lactams. A combination of analytical and biochemical experiments and <i>in silico</i> modeling collectively offer a comprehensive understanding of the mechanism of inhibition by these two inhibitors. Our studies show that RPX 7546 is a less effective inhibitor of IMP-78, compared to IMP-1, while D-CS319 shows equally effective inhibition of both enzymes. The findings can be explained in light of the evolution of IMP-78 to overcome structural differences of substrates. Studying inhibitors with variants of clinically relevant MBLs is an area that is growing in importance in the literature. The findings of the current study highlight its significance and the urgent need for the discovery of an MBL inhibitor for clinical use.</p>","PeriodicalId":17,"journal":{"name":"ACS Infectious Diseases","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inhibitor Affinity Differs among Clinical Variants of IMP Metallo-<b>β</b>-Lactamases: Analysis and Implications for Inhibitor Design.\",\"authors\":\"Caitlyn A Thomas, John Paul Alao, Thomas Smisek, Zishuo Cheng, Christopher R Bethel, Kundi Yang, Ikponwmosa Obaseki, Richard C Page, Robert A Bonomo, Peter Oelschlaeger, Walter Fast, Andrea N Kravats, Michael W Crowder\",\"doi\":\"10.1021/acsinfecdis.5c00138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>β-Lactam-resistant bacterial infections are a serious concern worldwide. A common mechanism of β-lactam resistance is the expression of β-lactamases, which are capable of hydrolyzing the β-lactam bond in the most commonly used β-lactam antibiotics. Metallo-β-lactamases (MBLs) utilize 1 or 2 zinc ions for catalysis. One of the three most clinically relevant MBLs is Imipenemase (IMP). An important potential way to combat MBLs is to use an inhibitor in combination with an existing β-lactam drug. The current study investigates the mechanism of inhibition of preclinical boronic acid β-lactamase inhibitor RPX 7546 and mercaptomethyl bisthiazolidine D-CS319, which are two previously reported MBL inhibitors, with IMP-1 and its variant IMP-78 (V67F/S262G), chosen due to its improved efficiency hydrolyzing carbapenem β-lactams. A combination of analytical and biochemical experiments and <i>in silico</i> modeling collectively offer a comprehensive understanding of the mechanism of inhibition by these two inhibitors. Our studies show that RPX 7546 is a less effective inhibitor of IMP-78, compared to IMP-1, while D-CS319 shows equally effective inhibition of both enzymes. The findings can be explained in light of the evolution of IMP-78 to overcome structural differences of substrates. Studying inhibitors with variants of clinically relevant MBLs is an area that is growing in importance in the literature. The findings of the current study highlight its significance and the urgent need for the discovery of an MBL inhibitor for clinical use.</p>\",\"PeriodicalId\":17,\"journal\":{\"name\":\"ACS Infectious Diseases\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Infectious Diseases\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1021/acsinfecdis.5c00138\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Infectious Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acsinfecdis.5c00138","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Inhibitor Affinity Differs among Clinical Variants of IMP Metallo-β-Lactamases: Analysis and Implications for Inhibitor Design.
β-Lactam-resistant bacterial infections are a serious concern worldwide. A common mechanism of β-lactam resistance is the expression of β-lactamases, which are capable of hydrolyzing the β-lactam bond in the most commonly used β-lactam antibiotics. Metallo-β-lactamases (MBLs) utilize 1 or 2 zinc ions for catalysis. One of the three most clinically relevant MBLs is Imipenemase (IMP). An important potential way to combat MBLs is to use an inhibitor in combination with an existing β-lactam drug. The current study investigates the mechanism of inhibition of preclinical boronic acid β-lactamase inhibitor RPX 7546 and mercaptomethyl bisthiazolidine D-CS319, which are two previously reported MBL inhibitors, with IMP-1 and its variant IMP-78 (V67F/S262G), chosen due to its improved efficiency hydrolyzing carbapenem β-lactams. A combination of analytical and biochemical experiments and in silico modeling collectively offer a comprehensive understanding of the mechanism of inhibition by these two inhibitors. Our studies show that RPX 7546 is a less effective inhibitor of IMP-78, compared to IMP-1, while D-CS319 shows equally effective inhibition of both enzymes. The findings can be explained in light of the evolution of IMP-78 to overcome structural differences of substrates. Studying inhibitors with variants of clinically relevant MBLs is an area that is growing in importance in the literature. The findings of the current study highlight its significance and the urgent need for the discovery of an MBL inhibitor for clinical use.
期刊介绍:
ACS Infectious Diseases will be the first journal to highlight chemistry and its role in this multidisciplinary and collaborative research area. The journal will cover a diverse array of topics including, but not limited to:
* Discovery and development of new antimicrobial agents — identified through target- or phenotypic-based approaches as well as compounds that induce synergy with antimicrobials.
* Characterization and validation of drug target or pathways — use of single target and genome-wide knockdown and knockouts, biochemical studies, structural biology, new technologies to facilitate characterization and prioritization of potential drug targets.
* Mechanism of drug resistance — fundamental research that advances our understanding of resistance; strategies to prevent resistance.
* Mechanisms of action — use of genetic, metabolomic, and activity- and affinity-based protein profiling to elucidate the mechanism of action of clinical and experimental antimicrobial agents.
* Host-pathogen interactions — tools for studying host-pathogen interactions, cellular biochemistry of hosts and pathogens, and molecular interactions of pathogens with host microbiota.
* Small molecule vaccine adjuvants for infectious disease.
* Viral and bacterial biochemistry and molecular biology.