Catia Costa,Johanna von Gerichten,Vladimir Palitsin,Geoffrey W Grime,Steve J Hinder,Naoko Sano,Roger Webb,Melanie J Bailey
{"title":"多模态离子束成像在微米尺度上使用水簇二次离子质谱和MeV离子束分析来关联元素和代谢物。","authors":"Catia Costa,Johanna von Gerichten,Vladimir Palitsin,Geoffrey W Grime,Steve J Hinder,Naoko Sano,Roger Webb,Melanie J Bailey","doi":"10.1021/acs.analchem.5c02890","DOIUrl":null,"url":null,"abstract":"Multiomics imaging at or below the single cell level is highly sought after for correlating the location of metal containing drugs, nanoparticles, or bioaccumulated metals with host metabolites and lipids. Secondary ion mass spectrometry (SIMS) is a technique that can image lipids and metabolites at high spatial resolution (∼1 μm), especially water cluster SIMS. Similarly, X-ray mapping techniques such as particle induced X-ray emission (PIXE) can image elements at submicron spatial resolution in tissues. Here we developed a workflow for SIMS followed by X-ray elemental mapping, performed on the same section of tissue. To enable compatibility with X-ray spectrometry, samples were mounted on a thin polymer film, which proved challenging for SIMS due to charge accumulation on the sample surface. Various sample preparation strategies, including carbon coating and metallic grids, were tested to overcome this issue. Multimodal imaging using SIMS and ion beam analysis (IBA) was then successfully performed on a porcine skin section. By way of example, we show how SIMS-IBA can be applied to image the different regions of a hair follicle to colocate elements, metals, and lipids using sequential elemental and molecular mapping, without any delocalization or loss by the preceding measurement.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"25 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multimodal Ion Beam Imaging to Correlate Elements and Metabolites at the Micron Scale Using Water Cluster Secondary Ion Mass Spectrometry and MeV Ion Beam Analysis.\",\"authors\":\"Catia Costa,Johanna von Gerichten,Vladimir Palitsin,Geoffrey W Grime,Steve J Hinder,Naoko Sano,Roger Webb,Melanie J Bailey\",\"doi\":\"10.1021/acs.analchem.5c02890\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multiomics imaging at or below the single cell level is highly sought after for correlating the location of metal containing drugs, nanoparticles, or bioaccumulated metals with host metabolites and lipids. Secondary ion mass spectrometry (SIMS) is a technique that can image lipids and metabolites at high spatial resolution (∼1 μm), especially water cluster SIMS. Similarly, X-ray mapping techniques such as particle induced X-ray emission (PIXE) can image elements at submicron spatial resolution in tissues. Here we developed a workflow for SIMS followed by X-ray elemental mapping, performed on the same section of tissue. To enable compatibility with X-ray spectrometry, samples were mounted on a thin polymer film, which proved challenging for SIMS due to charge accumulation on the sample surface. Various sample preparation strategies, including carbon coating and metallic grids, were tested to overcome this issue. Multimodal imaging using SIMS and ion beam analysis (IBA) was then successfully performed on a porcine skin section. By way of example, we show how SIMS-IBA can be applied to image the different regions of a hair follicle to colocate elements, metals, and lipids using sequential elemental and molecular mapping, without any delocalization or loss by the preceding measurement.\",\"PeriodicalId\":27,\"journal\":{\"name\":\"Analytical Chemistry\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.analchem.5c02890\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.5c02890","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Multimodal Ion Beam Imaging to Correlate Elements and Metabolites at the Micron Scale Using Water Cluster Secondary Ion Mass Spectrometry and MeV Ion Beam Analysis.
Multiomics imaging at or below the single cell level is highly sought after for correlating the location of metal containing drugs, nanoparticles, or bioaccumulated metals with host metabolites and lipids. Secondary ion mass spectrometry (SIMS) is a technique that can image lipids and metabolites at high spatial resolution (∼1 μm), especially water cluster SIMS. Similarly, X-ray mapping techniques such as particle induced X-ray emission (PIXE) can image elements at submicron spatial resolution in tissues. Here we developed a workflow for SIMS followed by X-ray elemental mapping, performed on the same section of tissue. To enable compatibility with X-ray spectrometry, samples were mounted on a thin polymer film, which proved challenging for SIMS due to charge accumulation on the sample surface. Various sample preparation strategies, including carbon coating and metallic grids, were tested to overcome this issue. Multimodal imaging using SIMS and ion beam analysis (IBA) was then successfully performed on a porcine skin section. By way of example, we show how SIMS-IBA can be applied to image the different regions of a hair follicle to colocate elements, metals, and lipids using sequential elemental and molecular mapping, without any delocalization or loss by the preceding measurement.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.