Weiwei Peng, Marta Šiborová, Xuesheng Wu, Wenjuan Du, Douwe Schulte, Matti F Pronker, Cornelis A M de Haan, Joost Snijder
{"title":"典型抗原位点I抗体131-2a与呼吸道合胞病毒F蛋白融合后特异性结合的结构基础","authors":"Weiwei Peng, Marta Šiborová, Xuesheng Wu, Wenjuan Du, Douwe Schulte, Matti F Pronker, Cornelis A M de Haan, Joost Snijder","doi":"10.1021/acsinfecdis.5c00368","DOIUrl":null,"url":null,"abstract":"<p><p>The respiratory syncytial virus (RSV) fusion (F) protein is a major target of antiviral antibodies following natural infection or vaccination and is responsible for mediating fusion between the viral envelope and the host membrane. The fusion process is driven by a large-scale conformational change in F, switching irreversibly from the metastable prefusion state to the stable postfusion conformation. Previous research has identified six distinct antigenic sites in RSV-F, termed sites Ø, I, II, III, IV, and V. Of these, only antigenic site I is fully specific to the postfusion conformation of F. A monoclonal antibody 131-2a that specifically targets postfusion F has been widely used as a research tool to probe for postfusion F and to define antigenic site I in serological studies, yet its sequence and precise epitope have remained unknown. Here, we use mass spectrometry-based <i>de novo</i> sequencing of 131-2a to reverse engineer a recombinant product and study the epitope to define antigenic site I with molecular detail, revealing the structural basis for the antibody's specificity toward postfusion RSV-F.</p>","PeriodicalId":17,"journal":{"name":"ACS Infectious Diseases","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural Basis for Postfusion-Specific Binding to the Respiratory Syncytial Virus F Protein by the Canonical Antigenic Site I Antibody 131-2a.\",\"authors\":\"Weiwei Peng, Marta Šiborová, Xuesheng Wu, Wenjuan Du, Douwe Schulte, Matti F Pronker, Cornelis A M de Haan, Joost Snijder\",\"doi\":\"10.1021/acsinfecdis.5c00368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The respiratory syncytial virus (RSV) fusion (F) protein is a major target of antiviral antibodies following natural infection or vaccination and is responsible for mediating fusion between the viral envelope and the host membrane. The fusion process is driven by a large-scale conformational change in F, switching irreversibly from the metastable prefusion state to the stable postfusion conformation. Previous research has identified six distinct antigenic sites in RSV-F, termed sites Ø, I, II, III, IV, and V. Of these, only antigenic site I is fully specific to the postfusion conformation of F. A monoclonal antibody 131-2a that specifically targets postfusion F has been widely used as a research tool to probe for postfusion F and to define antigenic site I in serological studies, yet its sequence and precise epitope have remained unknown. Here, we use mass spectrometry-based <i>de novo</i> sequencing of 131-2a to reverse engineer a recombinant product and study the epitope to define antigenic site I with molecular detail, revealing the structural basis for the antibody's specificity toward postfusion RSV-F.</p>\",\"PeriodicalId\":17,\"journal\":{\"name\":\"ACS Infectious Diseases\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Infectious Diseases\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1021/acsinfecdis.5c00368\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Infectious Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acsinfecdis.5c00368","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Structural Basis for Postfusion-Specific Binding to the Respiratory Syncytial Virus F Protein by the Canonical Antigenic Site I Antibody 131-2a.
The respiratory syncytial virus (RSV) fusion (F) protein is a major target of antiviral antibodies following natural infection or vaccination and is responsible for mediating fusion between the viral envelope and the host membrane. The fusion process is driven by a large-scale conformational change in F, switching irreversibly from the metastable prefusion state to the stable postfusion conformation. Previous research has identified six distinct antigenic sites in RSV-F, termed sites Ø, I, II, III, IV, and V. Of these, only antigenic site I is fully specific to the postfusion conformation of F. A monoclonal antibody 131-2a that specifically targets postfusion F has been widely used as a research tool to probe for postfusion F and to define antigenic site I in serological studies, yet its sequence and precise epitope have remained unknown. Here, we use mass spectrometry-based de novo sequencing of 131-2a to reverse engineer a recombinant product and study the epitope to define antigenic site I with molecular detail, revealing the structural basis for the antibody's specificity toward postfusion RSV-F.
期刊介绍:
ACS Infectious Diseases will be the first journal to highlight chemistry and its role in this multidisciplinary and collaborative research area. The journal will cover a diverse array of topics including, but not limited to:
* Discovery and development of new antimicrobial agents — identified through target- or phenotypic-based approaches as well as compounds that induce synergy with antimicrobials.
* Characterization and validation of drug target or pathways — use of single target and genome-wide knockdown and knockouts, biochemical studies, structural biology, new technologies to facilitate characterization and prioritization of potential drug targets.
* Mechanism of drug resistance — fundamental research that advances our understanding of resistance; strategies to prevent resistance.
* Mechanisms of action — use of genetic, metabolomic, and activity- and affinity-based protein profiling to elucidate the mechanism of action of clinical and experimental antimicrobial agents.
* Host-pathogen interactions — tools for studying host-pathogen interactions, cellular biochemistry of hosts and pathogens, and molecular interactions of pathogens with host microbiota.
* Small molecule vaccine adjuvants for infectious disease.
* Viral and bacterial biochemistry and molecular biology.