具有定制机械和电气性能的纳米柱ZrCu薄膜金属玻璃

IF 2 4区 材料科学 Q3 MATERIALS SCIENCE, COATINGS & FILMS
Evgeniy Boltynjuk , Francesco Bignoli , Sree Harsha Nandam , Damien Faurie , Alexander Welle , Robert Kruk , Philippe Djemia , Horst Hahn , Yulia Ivanisenko , Matteo Ghidelli
{"title":"具有定制机械和电气性能的纳米柱ZrCu薄膜金属玻璃","authors":"Evgeniy Boltynjuk ,&nbsp;Francesco Bignoli ,&nbsp;Sree Harsha Nandam ,&nbsp;Damien Faurie ,&nbsp;Alexander Welle ,&nbsp;Robert Kruk ,&nbsp;Philippe Djemia ,&nbsp;Horst Hahn ,&nbsp;Yulia Ivanisenko ,&nbsp;Matteo Ghidelli","doi":"10.1016/j.tsf.2025.140748","DOIUrl":null,"url":null,"abstract":"<div><div>Thin-film metallic glasses (TFMGs) are promising materials for flexible electronics due to their large deformability and metallic-like electrical conductivity. Here, we synthesize homogeneous and nanocolumnar ZrCu TFMGs with tailored column size ranging from 16 up to 60 nm, investigating the relationship among atomic structure, electrical and mechanical properties focusing on their potential applications in flexible electronics. Tracer diffusion experiments indicate an absence of macroscopic cracks and enhanced diffusion coefficient for nanocolumnar TFMGs, up to one order of magnitude higher than in homogeneous counterpart, due to the presence of intercolumnar interfaces. We show that electrical resistivity increases with decreasing column size (from 570.0 ± 11.6 down to 285.9 ± 12.6 µΩ × cm) due to the enhanced electron scattering events at intercolumnar interfaces. Tensile tests on polymeric substrates reveal that the crack onset strain increases from 0.8 ± 0.05 up to 1.6 ± 0.05 % for large diameter nanocolumns due to the lower density of intercolumnar interfaces and presence of strong Cu-Cu bonds. Overall, we show how nanoengineering design concepts can be applied to TFMGs to tune their mechanical and electrical performance by controlling the nanocolumnar growth, paving the way for their potential applications in flexible electronics.</div></div>","PeriodicalId":23182,"journal":{"name":"Thin Solid Films","volume":"825 ","pages":"Article 140748"},"PeriodicalIF":2.0000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanocolumnar ZrCu thin film metallic glass with tailored mechanical and electrical properties\",\"authors\":\"Evgeniy Boltynjuk ,&nbsp;Francesco Bignoli ,&nbsp;Sree Harsha Nandam ,&nbsp;Damien Faurie ,&nbsp;Alexander Welle ,&nbsp;Robert Kruk ,&nbsp;Philippe Djemia ,&nbsp;Horst Hahn ,&nbsp;Yulia Ivanisenko ,&nbsp;Matteo Ghidelli\",\"doi\":\"10.1016/j.tsf.2025.140748\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Thin-film metallic glasses (TFMGs) are promising materials for flexible electronics due to their large deformability and metallic-like electrical conductivity. Here, we synthesize homogeneous and nanocolumnar ZrCu TFMGs with tailored column size ranging from 16 up to 60 nm, investigating the relationship among atomic structure, electrical and mechanical properties focusing on their potential applications in flexible electronics. Tracer diffusion experiments indicate an absence of macroscopic cracks and enhanced diffusion coefficient for nanocolumnar TFMGs, up to one order of magnitude higher than in homogeneous counterpart, due to the presence of intercolumnar interfaces. We show that electrical resistivity increases with decreasing column size (from 570.0 ± 11.6 down to 285.9 ± 12.6 µΩ × cm) due to the enhanced electron scattering events at intercolumnar interfaces. Tensile tests on polymeric substrates reveal that the crack onset strain increases from 0.8 ± 0.05 up to 1.6 ± 0.05 % for large diameter nanocolumns due to the lower density of intercolumnar interfaces and presence of strong Cu-Cu bonds. Overall, we show how nanoengineering design concepts can be applied to TFMGs to tune their mechanical and electrical performance by controlling the nanocolumnar growth, paving the way for their potential applications in flexible electronics.</div></div>\",\"PeriodicalId\":23182,\"journal\":{\"name\":\"Thin Solid Films\",\"volume\":\"825 \",\"pages\":\"Article 140748\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Thin Solid Films\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0040609025001476\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, COATINGS & FILMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thin Solid Films","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040609025001476","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0

摘要

薄膜金属玻璃(tfmg)由于具有较大的可变形性和类似金属的导电性,在柔性电子领域具有广阔的应用前景。在这里,我们合成了均匀和纳米柱的ZrCu tfmg,柱尺寸从16到60 nm不等,研究了原子结构,电学和力学性能之间的关系,重点研究了它们在柔性电子领域的潜在应用。示踪剂扩散实验表明,由于柱间界面的存在,纳米柱型tfmg没有宏观裂纹,扩散系数比均匀型tfmg提高了一个数量级。我们发现,由于柱间界面的电子散射事件增强,电阻率随着柱尺寸的减小而增加(从570.0±11.6µΩ × cm下降到285.9±12.6µΩ × cm)。在聚合物基体上的拉伸试验表明,由于柱间界面密度较低和Cu-Cu键的存在,大直径纳米柱的裂纹起裂应变从0.8±0.05增加到1.6±0.05%。总的来说,我们展示了如何将纳米工程设计概念应用于tfmg,通过控制纳米柱的生长来调整其机械和电气性能,为其在柔性电子领域的潜在应用铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nanocolumnar ZrCu thin film metallic glass with tailored mechanical and electrical properties
Thin-film metallic glasses (TFMGs) are promising materials for flexible electronics due to their large deformability and metallic-like electrical conductivity. Here, we synthesize homogeneous and nanocolumnar ZrCu TFMGs with tailored column size ranging from 16 up to 60 nm, investigating the relationship among atomic structure, electrical and mechanical properties focusing on their potential applications in flexible electronics. Tracer diffusion experiments indicate an absence of macroscopic cracks and enhanced diffusion coefficient for nanocolumnar TFMGs, up to one order of magnitude higher than in homogeneous counterpart, due to the presence of intercolumnar interfaces. We show that electrical resistivity increases with decreasing column size (from 570.0 ± 11.6 down to 285.9 ± 12.6 µΩ × cm) due to the enhanced electron scattering events at intercolumnar interfaces. Tensile tests on polymeric substrates reveal that the crack onset strain increases from 0.8 ± 0.05 up to 1.6 ± 0.05 % for large diameter nanocolumns due to the lower density of intercolumnar interfaces and presence of strong Cu-Cu bonds. Overall, we show how nanoengineering design concepts can be applied to TFMGs to tune their mechanical and electrical performance by controlling the nanocolumnar growth, paving the way for their potential applications in flexible electronics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Thin Solid Films
Thin Solid Films 工程技术-材料科学:膜
CiteScore
4.00
自引率
4.80%
发文量
381
审稿时长
7.5 months
期刊介绍: Thin Solid Films is an international journal which serves scientists and engineers working in the fields of thin-film synthesis, characterization, and applications. The field of thin films, which can be defined as the confluence of materials science, surface science, and applied physics, has become an identifiable unified discipline of scientific endeavor.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信