{"title":"利用CRISPR增强相敏表面等离子体共振成像技术检测原子摩尔核酸。","authors":"Xiaoqi Dai,Changle Meng,Songfeng Huang,Yuye Wang,Jianan He,Zhi Chen,Yinyue Ji,Jiali Tai,Jinming Zhang,Hailong Ni,Zhuolun Zhuang,Jiajie Chen,Han Zhang,Junle Qu,Yonghong Shao","doi":"10.1021/acs.analchem.5c01772","DOIUrl":null,"url":null,"abstract":"Driven by the growing need for real-time, amplification-free, and label-free nucleic acid detection in clinical diagnostics and pathogen surveillance, traditional methods often fall short due to limited sensitivity, a narrow dynamic range, and difficulties in detecting low-concentration nucleic acids and single-nucleotide mutations. To address these challenges, we developed a clustered regularly interspaced short palindromic repeats (CRISPR) enhanced Phase-interrogation Surface Plasmon Resonance imaging (CRISPR-PSPRi) sensor that employs phase delay modulation for highly sensitive extraction of SPR phase signals and a wavelength scanning strategy to extend its dynamic range. By harnessing CRISPR-Cas12a for target DNA recognition and activating trans-cleavage to cleave ssDNA-linked gold nanoparticle probes, our platform converts extremely weak signals from low-concentration DNA into readily detectable cleavage signals. Achieving a sensitivity of 1.436 × 10-6 RIU and a dynamic range of 0.0111 RIU, this system successfully detects specific DNA from the SARS-CoV-2 Omicron BA.2 variant and monkeypox virus, and it can detect single-nucleotide mutations down to 1 aM. This breakthrough offers a real-time, high-throughput, and ultrasensitive nucleic acid detection approach, promising significant advancements in clinical diagnostics and pathogen monitoring.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"115 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Attomolar Nucleic Acid Detection Using CRISPR Enhanced Phase-Sensitive Surface Plasmon Resonance Imaging.\",\"authors\":\"Xiaoqi Dai,Changle Meng,Songfeng Huang,Yuye Wang,Jianan He,Zhi Chen,Yinyue Ji,Jiali Tai,Jinming Zhang,Hailong Ni,Zhuolun Zhuang,Jiajie Chen,Han Zhang,Junle Qu,Yonghong Shao\",\"doi\":\"10.1021/acs.analchem.5c01772\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Driven by the growing need for real-time, amplification-free, and label-free nucleic acid detection in clinical diagnostics and pathogen surveillance, traditional methods often fall short due to limited sensitivity, a narrow dynamic range, and difficulties in detecting low-concentration nucleic acids and single-nucleotide mutations. To address these challenges, we developed a clustered regularly interspaced short palindromic repeats (CRISPR) enhanced Phase-interrogation Surface Plasmon Resonance imaging (CRISPR-PSPRi) sensor that employs phase delay modulation for highly sensitive extraction of SPR phase signals and a wavelength scanning strategy to extend its dynamic range. By harnessing CRISPR-Cas12a for target DNA recognition and activating trans-cleavage to cleave ssDNA-linked gold nanoparticle probes, our platform converts extremely weak signals from low-concentration DNA into readily detectable cleavage signals. Achieving a sensitivity of 1.436 × 10-6 RIU and a dynamic range of 0.0111 RIU, this system successfully detects specific DNA from the SARS-CoV-2 Omicron BA.2 variant and monkeypox virus, and it can detect single-nucleotide mutations down to 1 aM. This breakthrough offers a real-time, high-throughput, and ultrasensitive nucleic acid detection approach, promising significant advancements in clinical diagnostics and pathogen monitoring.\",\"PeriodicalId\":27,\"journal\":{\"name\":\"Analytical Chemistry\",\"volume\":\"115 1\",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.analchem.5c01772\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.5c01772","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Driven by the growing need for real-time, amplification-free, and label-free nucleic acid detection in clinical diagnostics and pathogen surveillance, traditional methods often fall short due to limited sensitivity, a narrow dynamic range, and difficulties in detecting low-concentration nucleic acids and single-nucleotide mutations. To address these challenges, we developed a clustered regularly interspaced short palindromic repeats (CRISPR) enhanced Phase-interrogation Surface Plasmon Resonance imaging (CRISPR-PSPRi) sensor that employs phase delay modulation for highly sensitive extraction of SPR phase signals and a wavelength scanning strategy to extend its dynamic range. By harnessing CRISPR-Cas12a for target DNA recognition and activating trans-cleavage to cleave ssDNA-linked gold nanoparticle probes, our platform converts extremely weak signals from low-concentration DNA into readily detectable cleavage signals. Achieving a sensitivity of 1.436 × 10-6 RIU and a dynamic range of 0.0111 RIU, this system successfully detects specific DNA from the SARS-CoV-2 Omicron BA.2 variant and monkeypox virus, and it can detect single-nucleotide mutations down to 1 aM. This breakthrough offers a real-time, high-throughput, and ultrasensitive nucleic acid detection approach, promising significant advancements in clinical diagnostics and pathogen monitoring.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.