基于贝叶斯更新的垃圾填埋场复合衬垫长期性能预测方法

IF 6.2 1区 工程技术 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Cheng Chen , Liang-Tong Zhan , Hai-Jian Xie , Yun-Min Chen
{"title":"基于贝叶斯更新的垃圾填埋场复合衬垫长期性能预测方法","authors":"Cheng Chen ,&nbsp;Liang-Tong Zhan ,&nbsp;Hai-Jian Xie ,&nbsp;Yun-Min Chen","doi":"10.1016/j.compgeo.2025.107511","DOIUrl":null,"url":null,"abstract":"<div><div>Predicting the long-term performance of landfill composite liners remains challenging due to temporally variable leachate heads combined with various sources of uncertainties. This study proposes a Bayesian updating framework to enhance the prediction of composite liner performance by systematically integrating field observations with prior knowledge. The framework addresses uncertainties in key parameters—including wrinkle length, hole frequency, hydraulic conductivity, and interface transmissivity—while accounting for model bias and measurement errors. An illustrative example of a geomembrane/geosynthetic clay liner/attenuation layer (GM/GCL/AL) system under high leachate head conditions demonstrates the method’s effectiveness. Results show that iterative Bayesian updating significantly improves leakage rate predictions across different landfill operational stages and refines estimates of contaminant breakthrough time (BTT), reducing prediction errors to within − 10 % to + 5 %, outperforming approaches that partially address uncertainties. Parametric studies further reveal that higher prior coefficients of variation (COVs) for model parameters and model bias lead to more stable predictions. This approach provides a dynamic and adaptable tool for optimizing landfill liner design and maintenance, offering improved accuracy in long-term environmental risk assessment.</div></div>","PeriodicalId":55217,"journal":{"name":"Computers and Geotechnics","volume":"187 ","pages":"Article 107511"},"PeriodicalIF":6.2000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian updating for improving long-term performance prediction of composite liners in landfills with temporally variable leachate head\",\"authors\":\"Cheng Chen ,&nbsp;Liang-Tong Zhan ,&nbsp;Hai-Jian Xie ,&nbsp;Yun-Min Chen\",\"doi\":\"10.1016/j.compgeo.2025.107511\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Predicting the long-term performance of landfill composite liners remains challenging due to temporally variable leachate heads combined with various sources of uncertainties. This study proposes a Bayesian updating framework to enhance the prediction of composite liner performance by systematically integrating field observations with prior knowledge. The framework addresses uncertainties in key parameters—including wrinkle length, hole frequency, hydraulic conductivity, and interface transmissivity—while accounting for model bias and measurement errors. An illustrative example of a geomembrane/geosynthetic clay liner/attenuation layer (GM/GCL/AL) system under high leachate head conditions demonstrates the method’s effectiveness. Results show that iterative Bayesian updating significantly improves leakage rate predictions across different landfill operational stages and refines estimates of contaminant breakthrough time (BTT), reducing prediction errors to within − 10 % to + 5 %, outperforming approaches that partially address uncertainties. Parametric studies further reveal that higher prior coefficients of variation (COVs) for model parameters and model bias lead to more stable predictions. This approach provides a dynamic and adaptable tool for optimizing landfill liner design and maintenance, offering improved accuracy in long-term environmental risk assessment.</div></div>\",\"PeriodicalId\":55217,\"journal\":{\"name\":\"Computers and Geotechnics\",\"volume\":\"187 \",\"pages\":\"Article 107511\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers and Geotechnics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0266352X25004604\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Geotechnics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266352X25004604","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

预测垃圾填埋场复合衬垫的长期性能仍然具有挑战性,因为时间变化的渗滤液头结合各种不确定性来源。本研究提出了一个贝叶斯更新框架,通过系统地将现场观测与先验知识相结合来增强复合衬垫性能的预测。该框架解决了关键参数的不确定性,包括褶皱长度、孔频率、水力传导率和界面透射率,同时考虑了模型偏差和测量误差。高渗滤液水头条件下土工膜/土工合成粘土衬垫/衰减层(GM/GCL/AL)系统的实例验证了该方法的有效性。结果表明,迭代贝叶斯更新显著提高了不同填埋场操作阶段的泄漏率预测,并改进了污染物突破时间(BTT)的估计,将预测误差降低到- 10%至+ 5%,优于部分解决不确定性的方法。参数研究进一步表明,模型参数和模型偏差的先验变异系数(cov)越高,预测越稳定。这种方法为优化垃圾填埋场衬垫设计和维护提供了一种动态的、适应性强的工具,提高了长期环境风险评估的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian updating for improving long-term performance prediction of composite liners in landfills with temporally variable leachate head
Predicting the long-term performance of landfill composite liners remains challenging due to temporally variable leachate heads combined with various sources of uncertainties. This study proposes a Bayesian updating framework to enhance the prediction of composite liner performance by systematically integrating field observations with prior knowledge. The framework addresses uncertainties in key parameters—including wrinkle length, hole frequency, hydraulic conductivity, and interface transmissivity—while accounting for model bias and measurement errors. An illustrative example of a geomembrane/geosynthetic clay liner/attenuation layer (GM/GCL/AL) system under high leachate head conditions demonstrates the method’s effectiveness. Results show that iterative Bayesian updating significantly improves leakage rate predictions across different landfill operational stages and refines estimates of contaminant breakthrough time (BTT), reducing prediction errors to within − 10 % to + 5 %, outperforming approaches that partially address uncertainties. Parametric studies further reveal that higher prior coefficients of variation (COVs) for model parameters and model bias lead to more stable predictions. This approach provides a dynamic and adaptable tool for optimizing landfill liner design and maintenance, offering improved accuracy in long-term environmental risk assessment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers and Geotechnics
Computers and Geotechnics 地学-地球科学综合
CiteScore
9.10
自引率
15.10%
发文量
438
审稿时长
45 days
期刊介绍: The use of computers is firmly established in geotechnical engineering and continues to grow rapidly in both engineering practice and academe. The development of advanced numerical techniques and constitutive modeling, in conjunction with rapid developments in computer hardware, enables problems to be tackled that were unthinkable even a few years ago. Computers and Geotechnics provides an up-to-date reference for engineers and researchers engaged in computer aided analysis and research in geotechnical engineering. The journal is intended for an expeditious dissemination of advanced computer applications across a broad range of geotechnical topics. Contributions on advances in numerical algorithms, computer implementation of new constitutive models and probabilistic methods are especially encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信