基于多模态分子光谱融合的深度学习算法辅助鲑鱼肉TBARS值无损检测

IF 9.8 1区 农林科学 Q1 CHEMISTRY, APPLIED
Minqiang Guo , Hong Lin , Hua Feng , Limin Cao , Jianxin Sui , Xiudan Wang , Kaiqiang Wang
{"title":"基于多模态分子光谱融合的深度学习算法辅助鲑鱼肉TBARS值无损检测","authors":"Minqiang Guo ,&nbsp;Hong Lin ,&nbsp;Hua Feng ,&nbsp;Limin Cao ,&nbsp;Jianxin Sui ,&nbsp;Xiudan Wang ,&nbsp;Kaiqiang Wang","doi":"10.1016/j.foodchem.2025.145649","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a deep learning framework for the non-destructive assessment of lipid oxidation in salmon flesh, quantified by thiobarbituric acid reactive substances (TBARS), under diverse storage conditions (−20, 0, 4, 20 °C, and dynamic temperatures). By integrating multi-modal molecular spectroscopy (near-infrared and Raman) with a convolutional neural network (CNN), the research achieved enhanced accuracy in predicting TBARS values compared to partial least squares regression (PLSR) and long short-term memory (LSTM) models. The CNN achieved superior performance with R<sup>2</sup>ₚ = 0.866 and RPD = 4.136. Its end-to-end architecture and spectral data fusion improved prediction robustness and enabled real-time, non-invasive monitoring of salmon quality. This approach addresses industry demands for efficient cold-chain quality assessment, offering a scalable solution to optimize freshness evaluation and consumer satisfaction. Overall, the methodology demonstrates the strong potential of combining multi-modal spectroscopy with deep learning to advance food quality analytics in dynamic storage environments.</div></div>","PeriodicalId":318,"journal":{"name":"Food Chemistry","volume":"492 ","pages":"Article 145649"},"PeriodicalIF":9.8000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep learning algorithm-assisted non-destructive detection of TBARS values of salmon flesh using multi-modal molecular spectra fusion\",\"authors\":\"Minqiang Guo ,&nbsp;Hong Lin ,&nbsp;Hua Feng ,&nbsp;Limin Cao ,&nbsp;Jianxin Sui ,&nbsp;Xiudan Wang ,&nbsp;Kaiqiang Wang\",\"doi\":\"10.1016/j.foodchem.2025.145649\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study presents a deep learning framework for the non-destructive assessment of lipid oxidation in salmon flesh, quantified by thiobarbituric acid reactive substances (TBARS), under diverse storage conditions (−20, 0, 4, 20 °C, and dynamic temperatures). By integrating multi-modal molecular spectroscopy (near-infrared and Raman) with a convolutional neural network (CNN), the research achieved enhanced accuracy in predicting TBARS values compared to partial least squares regression (PLSR) and long short-term memory (LSTM) models. The CNN achieved superior performance with R<sup>2</sup>ₚ = 0.866 and RPD = 4.136. Its end-to-end architecture and spectral data fusion improved prediction robustness and enabled real-time, non-invasive monitoring of salmon quality. This approach addresses industry demands for efficient cold-chain quality assessment, offering a scalable solution to optimize freshness evaluation and consumer satisfaction. Overall, the methodology demonstrates the strong potential of combining multi-modal spectroscopy with deep learning to advance food quality analytics in dynamic storage environments.</div></div>\",\"PeriodicalId\":318,\"journal\":{\"name\":\"Food Chemistry\",\"volume\":\"492 \",\"pages\":\"Article 145649\"},\"PeriodicalIF\":9.8000,\"publicationDate\":\"2025-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Chemistry\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0308814625029000\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0308814625029000","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一个深度学习框架,用于在不同储存条件(- 20、0、4、20 °C和动态温度)下,通过硫代巴比妥酸反应物质(TBARS)对鲑鱼肉中脂质氧化的非破坏性评估进行量化。通过将多模态分子光谱(近红外和拉曼)与卷积神经网络(CNN)相结合,与偏最小二乘回归(PLSR)和长短期记忆(LSTM)模型相比,该研究提高了预测TBARS值的准确性。CNN的R2ₚ = 0.866,RPD = 4.136,表现优异。它的端到端架构和光谱数据融合提高了预测的鲁棒性,并实现了鲑鱼质量的实时、非侵入性监测。这种方法解决了行业对高效冷链质量评估的需求,提供了一种可扩展的解决方案,以优化新鲜度评估和消费者满意度。总体而言,该方法展示了将多模态光谱与深度学习相结合的强大潜力,以推进动态存储环境中的食品质量分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Deep learning algorithm-assisted non-destructive detection of TBARS values of salmon flesh using multi-modal molecular spectra fusion

Deep learning algorithm-assisted non-destructive detection of TBARS values of salmon flesh using multi-modal molecular spectra fusion

Deep learning algorithm-assisted non-destructive detection of TBARS values of salmon flesh using multi-modal molecular spectra fusion
This study presents a deep learning framework for the non-destructive assessment of lipid oxidation in salmon flesh, quantified by thiobarbituric acid reactive substances (TBARS), under diverse storage conditions (−20, 0, 4, 20 °C, and dynamic temperatures). By integrating multi-modal molecular spectroscopy (near-infrared and Raman) with a convolutional neural network (CNN), the research achieved enhanced accuracy in predicting TBARS values compared to partial least squares regression (PLSR) and long short-term memory (LSTM) models. The CNN achieved superior performance with R2ₚ = 0.866 and RPD = 4.136. Its end-to-end architecture and spectral data fusion improved prediction robustness and enabled real-time, non-invasive monitoring of salmon quality. This approach addresses industry demands for efficient cold-chain quality assessment, offering a scalable solution to optimize freshness evaluation and consumer satisfaction. Overall, the methodology demonstrates the strong potential of combining multi-modal spectroscopy with deep learning to advance food quality analytics in dynamic storage environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Food Chemistry
Food Chemistry 工程技术-食品科技
CiteScore
16.30
自引率
10.20%
发文量
3130
审稿时长
122 days
期刊介绍: Food Chemistry publishes original research papers dealing with the advancement of the chemistry and biochemistry of foods or the analytical methods/ approach used. All papers should focus on the novelty of the research carried out.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信