谷子蛋白K3ZAN2抑制α-葡萄糖苷酶的机制:实验与分子模拟相结合的研究。

IF 6.5 1区 农林科学 Q1 CHEMISTRY, APPLIED
Food Chemistry: X Pub Date : 2025-07-06 eCollection Date: 2025-07-01 DOI:10.1016/j.fochx.2025.102749
Liangxing Zhao, Ruikang Lin, Xinlai Dou, Qingyu Zhao, Chao Wang, Yong Xue, Qun Shen
{"title":"谷子蛋白K3ZAN2抑制α-葡萄糖苷酶的机制:实验与分子模拟相结合的研究。","authors":"Liangxing Zhao, Ruikang Lin, Xinlai Dou, Qingyu Zhao, Chao Wang, Yong Xue, Qun Shen","doi":"10.1016/j.fochx.2025.102749","DOIUrl":null,"url":null,"abstract":"<p><p>Dietary proteins with α-glucosidase inhibitory activity are gaining interest for their role in supporting glycemic control. Here, we report that millet-derived prolamin K3ZAN2 modulates α-glucosidase activity through a flexible-region-mediated mechanism. K3ZAN2 exhibited an IC₅₀ of 4.15 mg/mL, with its proteinaceous nature confirmed by UV spectroscopy and SDS-PAGE. Molecular docking showed that flexible residues Thr11, Ser18, Gln20, Gly26, and Gln64 interact with α-glucosidase active site residues via hydrogen bonds and hydrophobic interactions. Molecular dynamics simulations (102 ns) indicated structural stability (RMSD ∼0.2 nm), compactness (Rg ∼1.9 nm), and persistent hydrogen bonding. Binding free energy (ΔG = -15,536.71 kJ/mol) supported strong affinity. Principal component and free energy landscape analyses revealed conformational transitions and stable states, while dynamic cross-correlation analysis highlighted coordinated motions at the interface. These computational insights support a dynamic binding model, enhancing the understanding of food protein-enzyme interactions relevant to glycemic regulation.</p>","PeriodicalId":12334,"journal":{"name":"Food Chemistry: X","volume":"29 ","pages":"102749"},"PeriodicalIF":6.5000,"publicationDate":"2025-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12275070/pdf/","citationCount":"0","resultStr":"{\"title\":\"Mechanistic insight into the inhibition of α-glucosidase by millet Prolamin K3ZAN2: An integrated experimental and molecular simulation study.\",\"authors\":\"Liangxing Zhao, Ruikang Lin, Xinlai Dou, Qingyu Zhao, Chao Wang, Yong Xue, Qun Shen\",\"doi\":\"10.1016/j.fochx.2025.102749\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Dietary proteins with α-glucosidase inhibitory activity are gaining interest for their role in supporting glycemic control. Here, we report that millet-derived prolamin K3ZAN2 modulates α-glucosidase activity through a flexible-region-mediated mechanism. K3ZAN2 exhibited an IC₅₀ of 4.15 mg/mL, with its proteinaceous nature confirmed by UV spectroscopy and SDS-PAGE. Molecular docking showed that flexible residues Thr11, Ser18, Gln20, Gly26, and Gln64 interact with α-glucosidase active site residues via hydrogen bonds and hydrophobic interactions. Molecular dynamics simulations (102 ns) indicated structural stability (RMSD ∼0.2 nm), compactness (Rg ∼1.9 nm), and persistent hydrogen bonding. Binding free energy (ΔG = -15,536.71 kJ/mol) supported strong affinity. Principal component and free energy landscape analyses revealed conformational transitions and stable states, while dynamic cross-correlation analysis highlighted coordinated motions at the interface. These computational insights support a dynamic binding model, enhancing the understanding of food protein-enzyme interactions relevant to glycemic regulation.</p>\",\"PeriodicalId\":12334,\"journal\":{\"name\":\"Food Chemistry: X\",\"volume\":\"29 \",\"pages\":\"102749\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12275070/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Chemistry: X\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1016/j.fochx.2025.102749\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry: X","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.fochx.2025.102749","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

具有α-葡萄糖苷酶抑制活性的膳食蛋白因其支持血糖控制的作用而受到关注。在这里,我们报道了小米衍生的蛋白K3ZAN2通过灵活区域介导的机制调节α-葡萄糖苷酶的活性。K3ZAN2的IC₅₀为4.15 mg/mL,其蛋白质性质经UV光谱和SDS-PAGE证实。分子对接表明,柔性残基Thr11、Ser18、Gln20、Gly26和Gln64通过氢键和疏水相互作用与α-葡萄糖苷酶活性位点残基相互作用。分子动力学模拟(102 ns)表明结构稳定性(RMSD ~ 0.2 nm)、致密性(Rg ~ 1.9 nm)和持久的氢键。结合自由能(ΔG = -15,536.71 kJ/mol)支持强亲和力。主成分分析和自由能分析揭示了构象转变和稳定状态,动态互相关分析揭示了界面上的协调运动。这些计算见解支持动态结合模型,增强了对与血糖调节相关的食物蛋白-酶相互作用的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mechanistic insight into the inhibition of α-glucosidase by millet Prolamin K3ZAN2: An integrated experimental and molecular simulation study.

Dietary proteins with α-glucosidase inhibitory activity are gaining interest for their role in supporting glycemic control. Here, we report that millet-derived prolamin K3ZAN2 modulates α-glucosidase activity through a flexible-region-mediated mechanism. K3ZAN2 exhibited an IC₅₀ of 4.15 mg/mL, with its proteinaceous nature confirmed by UV spectroscopy and SDS-PAGE. Molecular docking showed that flexible residues Thr11, Ser18, Gln20, Gly26, and Gln64 interact with α-glucosidase active site residues via hydrogen bonds and hydrophobic interactions. Molecular dynamics simulations (102 ns) indicated structural stability (RMSD ∼0.2 nm), compactness (Rg ∼1.9 nm), and persistent hydrogen bonding. Binding free energy (ΔG = -15,536.71 kJ/mol) supported strong affinity. Principal component and free energy landscape analyses revealed conformational transitions and stable states, while dynamic cross-correlation analysis highlighted coordinated motions at the interface. These computational insights support a dynamic binding model, enhancing the understanding of food protein-enzyme interactions relevant to glycemic regulation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Food Chemistry: X
Food Chemistry: X CHEMISTRY, APPLIED-
CiteScore
4.90
自引率
6.60%
发文量
315
审稿时长
55 days
期刊介绍: Food Chemistry: X, one of three Open Access companion journals to Food Chemistry, follows the same aims, scope, and peer-review process. It focuses on papers advancing food and biochemistry or analytical methods, prioritizing research novelty. Manuscript evaluation considers novelty, scientific rigor, field advancement, and reader interest. Excluded are studies on food molecular sciences or disease cure/prevention. Topics include food component chemistry, bioactives, processing effects, additives, contaminants, and analytical methods. The journal welcome Analytical Papers addressing food microbiology, sensory aspects, and more, emphasizing new methods with robust validation and applicability to diverse foods or regions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信