{"title":"用于提高击穿电压的复用Ga2O3-on-SiC场效应晶体管","authors":"Junting Chen;Xiaohan Zhang;Junlei Zhao;Jin Wei;Mengyuan Hua","doi":"10.1109/JEDS.2025.3584977","DOIUrl":null,"url":null,"abstract":"Heterosubstrates have been extensively studied as a method to improve the heat dissipation of Ga2O3 devices. In this simulation work, we propose a novel role for p-type available heterosubstrates, as a component of a reduced surface field (RESURF) structure in Ga2O3 lateral field-effect transistors (FETs). The RESURF structure can eliminate the electric field crowding and contribute to higher breakdown voltage. Using SiC as an example, the designing strategy for doping concentration and dimensions of the p-type region is systematically studied using TCAD modeling. Meanwhile, the interface charges and Al2O3 interlayer that could exist in realistic devices are mimicked in the simulation. Additionally, the feasibility of the RESURF structure for high-frequency switching operation is supported by the simulation on charging/discharging time the p-SiC depletion region. This study demonstrates the great potential of utilizing the electrical properties of heat-dissipating heterosubstrates to achieve a uniform electric field distribution in Ga2O3 FETs.","PeriodicalId":13210,"journal":{"name":"IEEE Journal of the Electron Devices Society","volume":"13 ","pages":"570-576"},"PeriodicalIF":2.0000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11080126","citationCount":"0","resultStr":"{\"title\":\"RESURF Ga2O3-on-SiC Field Effect Transistors for Enhanced Breakdown Voltage\",\"authors\":\"Junting Chen;Xiaohan Zhang;Junlei Zhao;Jin Wei;Mengyuan Hua\",\"doi\":\"10.1109/JEDS.2025.3584977\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Heterosubstrates have been extensively studied as a method to improve the heat dissipation of Ga2O3 devices. In this simulation work, we propose a novel role for p-type available heterosubstrates, as a component of a reduced surface field (RESURF) structure in Ga2O3 lateral field-effect transistors (FETs). The RESURF structure can eliminate the electric field crowding and contribute to higher breakdown voltage. Using SiC as an example, the designing strategy for doping concentration and dimensions of the p-type region is systematically studied using TCAD modeling. Meanwhile, the interface charges and Al2O3 interlayer that could exist in realistic devices are mimicked in the simulation. Additionally, the feasibility of the RESURF structure for high-frequency switching operation is supported by the simulation on charging/discharging time the p-SiC depletion region. This study demonstrates the great potential of utilizing the electrical properties of heat-dissipating heterosubstrates to achieve a uniform electric field distribution in Ga2O3 FETs.\",\"PeriodicalId\":13210,\"journal\":{\"name\":\"IEEE Journal of the Electron Devices Society\",\"volume\":\"13 \",\"pages\":\"570-576\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11080126\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of the Electron Devices Society\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11080126/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of the Electron Devices Society","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11080126/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
RESURF Ga2O3-on-SiC Field Effect Transistors for Enhanced Breakdown Voltage
Heterosubstrates have been extensively studied as a method to improve the heat dissipation of Ga2O3 devices. In this simulation work, we propose a novel role for p-type available heterosubstrates, as a component of a reduced surface field (RESURF) structure in Ga2O3 lateral field-effect transistors (FETs). The RESURF structure can eliminate the electric field crowding and contribute to higher breakdown voltage. Using SiC as an example, the designing strategy for doping concentration and dimensions of the p-type region is systematically studied using TCAD modeling. Meanwhile, the interface charges and Al2O3 interlayer that could exist in realistic devices are mimicked in the simulation. Additionally, the feasibility of the RESURF structure for high-frequency switching operation is supported by the simulation on charging/discharging time the p-SiC depletion region. This study demonstrates the great potential of utilizing the electrical properties of heat-dissipating heterosubstrates to achieve a uniform electric field distribution in Ga2O3 FETs.
期刊介绍:
The IEEE Journal of the Electron Devices Society (J-EDS) is an open-access, fully electronic scientific journal publishing papers ranging from fundamental to applied research that are scientifically rigorous and relevant to electron devices. The J-EDS publishes original and significant contributions relating to the theory, modelling, design, performance, and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanodevices, optoelectronics, photovoltaics, power IC''s, and micro-sensors. Tutorial and review papers on these subjects are, also, published. And, occasionally special issues with a collection of papers on particular areas in more depth and breadth are, also, published. J-EDS publishes all papers that are judged to be technically valid and original.