{"title":"算子函数的代数对角化","authors":"Matthias Stiefenhofer","doi":"10.1016/j.laa.2025.07.013","DOIUrl":null,"url":null,"abstract":"<div><div>We give conditions for local diagonalization of an analytic operator family <span><math><mi>L</mi><mrow><mo>(</mo><mi>ε</mi><mo>)</mo></mrow></math></span> according to <span><math><mi>L</mi><mrow><mo>(</mo><mi>ε</mi><mo>)</mo></mrow><mo>=</mo><mi>ψ</mi><mrow><mo>(</mo><mi>ε</mi><mo>)</mo></mrow><mo>⋅</mo><mi>Δ</mi><mrow><mo>(</mo><mi>ε</mi><mo>)</mo></mrow><mo>⋅</mo><msup><mrow><mi>ϕ</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mrow><mo>(</mo><mi>ε</mi><mo>)</mo></mrow></math></span> with diagonal operator polynomial <span><math><mi>Δ</mi><mrow><mo>(</mo><mi>ε</mi><mo>)</mo></mrow></math></span> and analytic near identity bijections <span><math><mi>ψ</mi><mrow><mo>(</mo><mi>ε</mi><mo>)</mo></mrow></math></span> and <span><math><mi>ϕ</mi><mrow><mo>(</mo><mi>ε</mi><mo>)</mo></mrow></math></span>. The family <span><math><mi>L</mi><mrow><mo>(</mo><mi>ε</mi><mo>)</mo></mrow></math></span> is acting between real or complex Banach spaces <em>B</em> and <span><math><mover><mrow><mi>B</mi></mrow><mrow><mo>¯</mo></mrow></mover></math></span>.</div><div>The basic assumption is given by stabilization of the Jordan chains at length <em>k</em> in the sense that no root elements with finite rank above <em>k</em> are allowed to exist. Jordan chains with infinite rank may appear. Decompositions of the linear spaces <em>B</em> and <span><math><mover><mrow><mi>B</mi></mrow><mrow><mo>¯</mo></mrow></mover></math></span> are constructed with corresponding subspaces assumed to be closed. These assumptions ensure finite pole order equal to <em>k</em> of the generalized inverse <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mrow><mo>(</mo><mi>ε</mi><mo>)</mo></mrow></math></span> at <span><math><mi>ε</mi><mo>=</mo><mn>0</mn></math></span>. The Smith form and smooth continuation of kernels and ranges of <span><math><mi>L</mi><mrow><mo>(</mo><mi>ε</mi><mo>)</mo></mrow></math></span> to appropriate limit spaces at <span><math><mi>ε</mi><mo>=</mo><mn>0</mn></math></span> arise immediately.</div><div>An algebraically oriented and self-contained approach is used, based on a recursion that allows for construction of power series solutions of <span><math><mi>L</mi><mrow><mo>(</mo><mi>ε</mi><mo>)</mo></mrow><mo>⋅</mo><mi>b</mi><mo>=</mo><mn>0</mn></math></span>. The power series solutions are convergent, as soon as analyticity of <span><math><mi>L</mi><mrow><mo>(</mo><mi>ε</mi><mo>)</mo></mrow></math></span> and continuity of related projections are assumed.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"725 ","pages":"Pages 319-354"},"PeriodicalIF":1.1000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diagonalization of Operator functions by algebraic methods\",\"authors\":\"Matthias Stiefenhofer\",\"doi\":\"10.1016/j.laa.2025.07.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We give conditions for local diagonalization of an analytic operator family <span><math><mi>L</mi><mrow><mo>(</mo><mi>ε</mi><mo>)</mo></mrow></math></span> according to <span><math><mi>L</mi><mrow><mo>(</mo><mi>ε</mi><mo>)</mo></mrow><mo>=</mo><mi>ψ</mi><mrow><mo>(</mo><mi>ε</mi><mo>)</mo></mrow><mo>⋅</mo><mi>Δ</mi><mrow><mo>(</mo><mi>ε</mi><mo>)</mo></mrow><mo>⋅</mo><msup><mrow><mi>ϕ</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mrow><mo>(</mo><mi>ε</mi><mo>)</mo></mrow></math></span> with diagonal operator polynomial <span><math><mi>Δ</mi><mrow><mo>(</mo><mi>ε</mi><mo>)</mo></mrow></math></span> and analytic near identity bijections <span><math><mi>ψ</mi><mrow><mo>(</mo><mi>ε</mi><mo>)</mo></mrow></math></span> and <span><math><mi>ϕ</mi><mrow><mo>(</mo><mi>ε</mi><mo>)</mo></mrow></math></span>. The family <span><math><mi>L</mi><mrow><mo>(</mo><mi>ε</mi><mo>)</mo></mrow></math></span> is acting between real or complex Banach spaces <em>B</em> and <span><math><mover><mrow><mi>B</mi></mrow><mrow><mo>¯</mo></mrow></mover></math></span>.</div><div>The basic assumption is given by stabilization of the Jordan chains at length <em>k</em> in the sense that no root elements with finite rank above <em>k</em> are allowed to exist. Jordan chains with infinite rank may appear. Decompositions of the linear spaces <em>B</em> and <span><math><mover><mrow><mi>B</mi></mrow><mrow><mo>¯</mo></mrow></mover></math></span> are constructed with corresponding subspaces assumed to be closed. These assumptions ensure finite pole order equal to <em>k</em> of the generalized inverse <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mrow><mo>(</mo><mi>ε</mi><mo>)</mo></mrow></math></span> at <span><math><mi>ε</mi><mo>=</mo><mn>0</mn></math></span>. The Smith form and smooth continuation of kernels and ranges of <span><math><mi>L</mi><mrow><mo>(</mo><mi>ε</mi><mo>)</mo></mrow></math></span> to appropriate limit spaces at <span><math><mi>ε</mi><mo>=</mo><mn>0</mn></math></span> arise immediately.</div><div>An algebraically oriented and self-contained approach is used, based on a recursion that allows for construction of power series solutions of <span><math><mi>L</mi><mrow><mo>(</mo><mi>ε</mi><mo>)</mo></mrow><mo>⋅</mo><mi>b</mi><mo>=</mo><mn>0</mn></math></span>. The power series solutions are convergent, as soon as analyticity of <span><math><mi>L</mi><mrow><mo>(</mo><mi>ε</mi><mo>)</mo></mrow></math></span> and continuity of related projections are assumed.</div></div>\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":\"725 \",\"pages\":\"Pages 319-354\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0024379525002976\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379525002976","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Diagonalization of Operator functions by algebraic methods
We give conditions for local diagonalization of an analytic operator family according to with diagonal operator polynomial and analytic near identity bijections and . The family is acting between real or complex Banach spaces B and .
The basic assumption is given by stabilization of the Jordan chains at length k in the sense that no root elements with finite rank above k are allowed to exist. Jordan chains with infinite rank may appear. Decompositions of the linear spaces B and are constructed with corresponding subspaces assumed to be closed. These assumptions ensure finite pole order equal to k of the generalized inverse at . The Smith form and smooth continuation of kernels and ranges of to appropriate limit spaces at arise immediately.
An algebraically oriented and self-contained approach is used, based on a recursion that allows for construction of power series solutions of . The power series solutions are convergent, as soon as analyticity of and continuity of related projections are assumed.
期刊介绍:
Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.