Hassan E Eldesouky, Richard M Jones, Shabber Mohammed, Enming Xing, Pui-Kai Li, David R Sherman
{"title":"尼图匹坦对结核分枝杆菌表现出强有力的活性。","authors":"Hassan E Eldesouky, Richard M Jones, Shabber Mohammed, Enming Xing, Pui-Kai Li, David R Sherman","doi":"10.1021/acsinfecdis.5c00298","DOIUrl":null,"url":null,"abstract":"<p><p>In <i>Mycobacterium tuberculosis</i> (Mtb), persisters are genotypically drug-sensitive bacteria that nonetheless survive antibiotic treatment. Persisters contribute to prolonged TB treatment duration and relapse risk, highlighting the need for new therapeutic strategies to effectively eliminate these tolerant subpopulations. In this study, we screened 2,336 FDA-approved compounds to identify agents that enhance the sterilizing activity of standard anti-TB drugs and prevent the regrowth of persisters. Netupitant (NTP), an FDA-approved antiemetic, emerged as a promising candidate. In combination with isoniazid (INH) and rifampicin (RIF), NTP eliminated viable Mtb cells, achieving a >6-log reduction in colony-forming units (CFUs), compared to the 2.5-log reduction observed with INH-RIF alone. NTP also demonstrated broad-spectrum efficacy, enhancing the activity of multiple TB drugs, including ethambutol, moxifloxacin, amikacin, and bedaquiline. Notably, NTP retained its potency under hypoxic and caseum-mimicking conditions, both of which are known to enrich for non-replicating, drug-tolerant cells. The mammalian target of NTP, the G protein-coupled receptor NK-1, is absent in bacteria, raising the possibility that the NTP target in bacteria is novel. To begin assessing this possibility, we performed transcriptomics and found that NTP significantly upregulates multiple oxidative stress response-associated genes, while downregulating pathways linked to protein synthesis, electron transport chain activities, and ATP synthesis. While further studies are required to decipher mechanisms of action and the resistance profile of NTP, and to assess its in vivo efficacy, these findings underscore its potential as a promising adjunct to existing TB therapies.</p>","PeriodicalId":17,"journal":{"name":"ACS Infectious Diseases","volume":" ","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Netupitant Exhibits Potent Activity on <i>Mycobacterium tuberculosis</i> Persisters.\",\"authors\":\"Hassan E Eldesouky, Richard M Jones, Shabber Mohammed, Enming Xing, Pui-Kai Li, David R Sherman\",\"doi\":\"10.1021/acsinfecdis.5c00298\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In <i>Mycobacterium tuberculosis</i> (Mtb), persisters are genotypically drug-sensitive bacteria that nonetheless survive antibiotic treatment. Persisters contribute to prolonged TB treatment duration and relapse risk, highlighting the need for new therapeutic strategies to effectively eliminate these tolerant subpopulations. In this study, we screened 2,336 FDA-approved compounds to identify agents that enhance the sterilizing activity of standard anti-TB drugs and prevent the regrowth of persisters. Netupitant (NTP), an FDA-approved antiemetic, emerged as a promising candidate. In combination with isoniazid (INH) and rifampicin (RIF), NTP eliminated viable Mtb cells, achieving a >6-log reduction in colony-forming units (CFUs), compared to the 2.5-log reduction observed with INH-RIF alone. NTP also demonstrated broad-spectrum efficacy, enhancing the activity of multiple TB drugs, including ethambutol, moxifloxacin, amikacin, and bedaquiline. Notably, NTP retained its potency under hypoxic and caseum-mimicking conditions, both of which are known to enrich for non-replicating, drug-tolerant cells. The mammalian target of NTP, the G protein-coupled receptor NK-1, is absent in bacteria, raising the possibility that the NTP target in bacteria is novel. To begin assessing this possibility, we performed transcriptomics and found that NTP significantly upregulates multiple oxidative stress response-associated genes, while downregulating pathways linked to protein synthesis, electron transport chain activities, and ATP synthesis. While further studies are required to decipher mechanisms of action and the resistance profile of NTP, and to assess its in vivo efficacy, these findings underscore its potential as a promising adjunct to existing TB therapies.</p>\",\"PeriodicalId\":17,\"journal\":{\"name\":\"ACS Infectious Diseases\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Infectious Diseases\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1021/acsinfecdis.5c00298\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Infectious Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acsinfecdis.5c00298","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Netupitant Exhibits Potent Activity on Mycobacterium tuberculosis Persisters.
In Mycobacterium tuberculosis (Mtb), persisters are genotypically drug-sensitive bacteria that nonetheless survive antibiotic treatment. Persisters contribute to prolonged TB treatment duration and relapse risk, highlighting the need for new therapeutic strategies to effectively eliminate these tolerant subpopulations. In this study, we screened 2,336 FDA-approved compounds to identify agents that enhance the sterilizing activity of standard anti-TB drugs and prevent the regrowth of persisters. Netupitant (NTP), an FDA-approved antiemetic, emerged as a promising candidate. In combination with isoniazid (INH) and rifampicin (RIF), NTP eliminated viable Mtb cells, achieving a >6-log reduction in colony-forming units (CFUs), compared to the 2.5-log reduction observed with INH-RIF alone. NTP also demonstrated broad-spectrum efficacy, enhancing the activity of multiple TB drugs, including ethambutol, moxifloxacin, amikacin, and bedaquiline. Notably, NTP retained its potency under hypoxic and caseum-mimicking conditions, both of which are known to enrich for non-replicating, drug-tolerant cells. The mammalian target of NTP, the G protein-coupled receptor NK-1, is absent in bacteria, raising the possibility that the NTP target in bacteria is novel. To begin assessing this possibility, we performed transcriptomics and found that NTP significantly upregulates multiple oxidative stress response-associated genes, while downregulating pathways linked to protein synthesis, electron transport chain activities, and ATP synthesis. While further studies are required to decipher mechanisms of action and the resistance profile of NTP, and to assess its in vivo efficacy, these findings underscore its potential as a promising adjunct to existing TB therapies.
期刊介绍:
ACS Infectious Diseases will be the first journal to highlight chemistry and its role in this multidisciplinary and collaborative research area. The journal will cover a diverse array of topics including, but not limited to:
* Discovery and development of new antimicrobial agents — identified through target- or phenotypic-based approaches as well as compounds that induce synergy with antimicrobials.
* Characterization and validation of drug target or pathways — use of single target and genome-wide knockdown and knockouts, biochemical studies, structural biology, new technologies to facilitate characterization and prioritization of potential drug targets.
* Mechanism of drug resistance — fundamental research that advances our understanding of resistance; strategies to prevent resistance.
* Mechanisms of action — use of genetic, metabolomic, and activity- and affinity-based protein profiling to elucidate the mechanism of action of clinical and experimental antimicrobial agents.
* Host-pathogen interactions — tools for studying host-pathogen interactions, cellular biochemistry of hosts and pathogens, and molecular interactions of pathogens with host microbiota.
* Small molecule vaccine adjuvants for infectious disease.
* Viral and bacterial biochemistry and molecular biology.