{"title":"关于Erdős矩阵和Marcus-Ree不等式的注解","authors":"Aman Kushwaha , Raghavendra Tripathi","doi":"10.1016/j.laa.2025.07.012","DOIUrl":null,"url":null,"abstract":"<div><div>In 1959, Marcus and Ree proved that any bistochastic matrix <em>A</em> satisfies<span><span><span><math><msub><mrow><mi>Δ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo><mo>≔</mo><munder><mi>max</mi><mrow><mi>σ</mi><mo>∈</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></munder><mo></mo><munderover><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></munderover><mi>A</mi><mo>(</mo><mi>i</mi><mo>,</mo><mi>σ</mi><mo>(</mo><mi>i</mi><mo>)</mo><mo>)</mo><mo>−</mo><munderover><mo>∑</mo><mrow><mi>i</mi><mo>,</mo><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></munderover><mi>A</mi><msup><mrow><mo>(</mo><mi>i</mi><mo>,</mo><mi>j</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>≥</mo><mn>0</mn><mspace></mspace><mo>.</mo></math></span></span></span> Erdős asked to characterize the bistochastic matrices satisfying <span><math><msub><mrow><mi>Δ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo><mo>=</mo><mn>0</mn></math></span>. This problem remains largely open, and very recently, a complete list of such matrices was obtained in dimension <span><math><mi>n</mi><mo>=</mo><mn>3</mn></math></span> by Bouthat, Mashreghi, and Morneau-Guérin. Soon after, Tripathi proved that there were only finitely many such matrices in any dimension <em>n</em>. In this paper, we continue the investigation initiated in these two works. We characterize all <span><math><mn>4</mn><mo>×</mo><mn>4</mn></math></span> bistochastic matrices satisfying <span><math><msub><mrow><mi>Δ</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo><mo>=</mo><mn>0</mn></math></span>. Furthermore, we show that for <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span>, <span><math><msub><mrow><mi>Δ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo><mo>=</mo><mi>α</mi></math></span> has uncountably many solutions when <span><math><mi>α</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>4</mn><mo>)</mo></math></span>. This answers a question raised in (Tripathi, 2025 <span><span>[16]</span></span>). We also extend the Marcus–Ree inequality to infinite bistochastic arrays and bistochastic kernels. Our investigation into <span><math><mn>4</mn><mo>×</mo><mn>4</mn></math></span> Erdős matrices also leads to several intriguing questions of independent interest. We propose several questions and conjectures and present numerical evidence for them.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"725 ","pages":"Pages 223-247"},"PeriodicalIF":1.1000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A note on Erdős matrices and Marcus–Ree inequality\",\"authors\":\"Aman Kushwaha , Raghavendra Tripathi\",\"doi\":\"10.1016/j.laa.2025.07.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In 1959, Marcus and Ree proved that any bistochastic matrix <em>A</em> satisfies<span><span><span><math><msub><mrow><mi>Δ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo><mo>≔</mo><munder><mi>max</mi><mrow><mi>σ</mi><mo>∈</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></munder><mo></mo><munderover><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></munderover><mi>A</mi><mo>(</mo><mi>i</mi><mo>,</mo><mi>σ</mi><mo>(</mo><mi>i</mi><mo>)</mo><mo>)</mo><mo>−</mo><munderover><mo>∑</mo><mrow><mi>i</mi><mo>,</mo><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></munderover><mi>A</mi><msup><mrow><mo>(</mo><mi>i</mi><mo>,</mo><mi>j</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>≥</mo><mn>0</mn><mspace></mspace><mo>.</mo></math></span></span></span> Erdős asked to characterize the bistochastic matrices satisfying <span><math><msub><mrow><mi>Δ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo><mo>=</mo><mn>0</mn></math></span>. This problem remains largely open, and very recently, a complete list of such matrices was obtained in dimension <span><math><mi>n</mi><mo>=</mo><mn>3</mn></math></span> by Bouthat, Mashreghi, and Morneau-Guérin. Soon after, Tripathi proved that there were only finitely many such matrices in any dimension <em>n</em>. In this paper, we continue the investigation initiated in these two works. We characterize all <span><math><mn>4</mn><mo>×</mo><mn>4</mn></math></span> bistochastic matrices satisfying <span><math><msub><mrow><mi>Δ</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo><mo>=</mo><mn>0</mn></math></span>. Furthermore, we show that for <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span>, <span><math><msub><mrow><mi>Δ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>A</mi><mo>)</mo><mo>=</mo><mi>α</mi></math></span> has uncountably many solutions when <span><math><mi>α</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>4</mn><mo>)</mo></math></span>. This answers a question raised in (Tripathi, 2025 <span><span>[16]</span></span>). We also extend the Marcus–Ree inequality to infinite bistochastic arrays and bistochastic kernels. Our investigation into <span><math><mn>4</mn><mo>×</mo><mn>4</mn></math></span> Erdős matrices also leads to several intriguing questions of independent interest. We propose several questions and conjectures and present numerical evidence for them.</div></div>\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":\"725 \",\"pages\":\"Pages 223-247\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0024379525002964\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379525002964","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
A note on Erdős matrices and Marcus–Ree inequality
In 1959, Marcus and Ree proved that any bistochastic matrix A satisfies Erdős asked to characterize the bistochastic matrices satisfying . This problem remains largely open, and very recently, a complete list of such matrices was obtained in dimension by Bouthat, Mashreghi, and Morneau-Guérin. Soon after, Tripathi proved that there were only finitely many such matrices in any dimension n. In this paper, we continue the investigation initiated in these two works. We characterize all bistochastic matrices satisfying . Furthermore, we show that for , has uncountably many solutions when . This answers a question raised in (Tripathi, 2025 [16]). We also extend the Marcus–Ree inequality to infinite bistochastic arrays and bistochastic kernels. Our investigation into Erdős matrices also leads to several intriguing questions of independent interest. We propose several questions and conjectures and present numerical evidence for them.
期刊介绍:
Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.