Ruoqing Zhang , Zhaohui Li , Xiaohu Pan , Hongyan Cui , Xiaogang Chen
{"title":"混合脑机接口用于上肢康复:将心肌梗死与外周野SSVEP刺激相结合","authors":"Ruoqing Zhang , Zhaohui Li , Xiaohu Pan , Hongyan Cui , Xiaogang Chen","doi":"10.1016/j.jneumeth.2025.110537","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Rehabilitation systems based on brain-computer interfaces (BCIs) hold significant potential for stroke patients. Existing systems, predominantly relying on motor imagery (MI), have room for improvement in both performance and user comfort. This study aims to enhance these aspects by developing a hybrid BCI system integrating MI with steady-state visual evoked potentials (SSVEPs) elicited by peripheral visual field stimulation.</div></div><div><h3>New methods</h3><div>The system is coupled with a soft robotic hand for feedback, forming a closed-loop framework. The design incorporates concentric rings with 7° and 10° eccentricities as peripheral stimuli, flashing at frequencies of 34 Hz and 35 Hz for left and right sides, respectively, to evoke SSVEPs. A central video (304 ×304 pixels) of left-hand/right-hand grasping motions guides subjects in performing synchronized MI tasks simply by focusing on it, which could also complete the SSVEP task.</div></div><div><h3>Results</h3><div>The offline results of 11 subjects showed that the classification result of MI was 70.65 ± 3.38 %, and the SSVEP result was 96.04 ± 3.33 %, and the fusion result reached 96.23 ± 3.21 %, which confirmed the validity of the fusion method. The online experiment of 11 subjects achieved a result of 97.12 ± 2.09 %, validating the feasibility of the system.</div></div><div><h3>Comparison with existing methods</h3><div>The proposed system improves the comfort level while ensuring the performance of the system as compared to the existing systems.</div></div><div><h3>Conclusion</h3><div>The feasibility of the proposed system was verified by offline and online experiments to advance the clinical applications.</div></div>","PeriodicalId":16415,"journal":{"name":"Journal of Neuroscience Methods","volume":"423 ","pages":"Article 110537"},"PeriodicalIF":2.7000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid BCI for upper limb rehabilitation: integrating MI with peripheral field SSVEP stimulation\",\"authors\":\"Ruoqing Zhang , Zhaohui Li , Xiaohu Pan , Hongyan Cui , Xiaogang Chen\",\"doi\":\"10.1016/j.jneumeth.2025.110537\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Rehabilitation systems based on brain-computer interfaces (BCIs) hold significant potential for stroke patients. Existing systems, predominantly relying on motor imagery (MI), have room for improvement in both performance and user comfort. This study aims to enhance these aspects by developing a hybrid BCI system integrating MI with steady-state visual evoked potentials (SSVEPs) elicited by peripheral visual field stimulation.</div></div><div><h3>New methods</h3><div>The system is coupled with a soft robotic hand for feedback, forming a closed-loop framework. The design incorporates concentric rings with 7° and 10° eccentricities as peripheral stimuli, flashing at frequencies of 34 Hz and 35 Hz for left and right sides, respectively, to evoke SSVEPs. A central video (304 ×304 pixels) of left-hand/right-hand grasping motions guides subjects in performing synchronized MI tasks simply by focusing on it, which could also complete the SSVEP task.</div></div><div><h3>Results</h3><div>The offline results of 11 subjects showed that the classification result of MI was 70.65 ± 3.38 %, and the SSVEP result was 96.04 ± 3.33 %, and the fusion result reached 96.23 ± 3.21 %, which confirmed the validity of the fusion method. The online experiment of 11 subjects achieved a result of 97.12 ± 2.09 %, validating the feasibility of the system.</div></div><div><h3>Comparison with existing methods</h3><div>The proposed system improves the comfort level while ensuring the performance of the system as compared to the existing systems.</div></div><div><h3>Conclusion</h3><div>The feasibility of the proposed system was verified by offline and online experiments to advance the clinical applications.</div></div>\",\"PeriodicalId\":16415,\"journal\":{\"name\":\"Journal of Neuroscience Methods\",\"volume\":\"423 \",\"pages\":\"Article 110537\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neuroscience Methods\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165027025001815\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience Methods","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165027025001815","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Hybrid BCI for upper limb rehabilitation: integrating MI with peripheral field SSVEP stimulation
Background
Rehabilitation systems based on brain-computer interfaces (BCIs) hold significant potential for stroke patients. Existing systems, predominantly relying on motor imagery (MI), have room for improvement in both performance and user comfort. This study aims to enhance these aspects by developing a hybrid BCI system integrating MI with steady-state visual evoked potentials (SSVEPs) elicited by peripheral visual field stimulation.
New methods
The system is coupled with a soft robotic hand for feedback, forming a closed-loop framework. The design incorporates concentric rings with 7° and 10° eccentricities as peripheral stimuli, flashing at frequencies of 34 Hz and 35 Hz for left and right sides, respectively, to evoke SSVEPs. A central video (304 ×304 pixels) of left-hand/right-hand grasping motions guides subjects in performing synchronized MI tasks simply by focusing on it, which could also complete the SSVEP task.
Results
The offline results of 11 subjects showed that the classification result of MI was 70.65 ± 3.38 %, and the SSVEP result was 96.04 ± 3.33 %, and the fusion result reached 96.23 ± 3.21 %, which confirmed the validity of the fusion method. The online experiment of 11 subjects achieved a result of 97.12 ± 2.09 %, validating the feasibility of the system.
Comparison with existing methods
The proposed system improves the comfort level while ensuring the performance of the system as compared to the existing systems.
Conclusion
The feasibility of the proposed system was verified by offline and online experiments to advance the clinical applications.
期刊介绍:
The Journal of Neuroscience Methods publishes papers that describe new methods that are specifically for neuroscience research conducted in invertebrates, vertebrates or in man. Major methodological improvements or important refinements of established neuroscience methods are also considered for publication. The Journal''s Scope includes all aspects of contemporary neuroscience research, including anatomical, behavioural, biochemical, cellular, computational, molecular, invasive and non-invasive imaging, optogenetic, and physiological research investigations.