拉曼测温声子平均自由程光谱

IF 9.7 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Katharina Dudde , Mahmoud Elhajhasan , Guillaume Würsch , Julian Themann , Jana Lierath , Dwaipayan Paul , Nakib H. Protik , Giuseppe Romano , Gordon Callsen
{"title":"拉曼测温声子平均自由程光谱","authors":"Katharina Dudde ,&nbsp;Mahmoud Elhajhasan ,&nbsp;Guillaume Würsch ,&nbsp;Julian Themann ,&nbsp;Jana Lierath ,&nbsp;Dwaipayan Paul ,&nbsp;Nakib H. Protik ,&nbsp;Giuseppe Romano ,&nbsp;Gordon Callsen","doi":"10.1016/j.mtphys.2025.101784","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we exemplify on a bulk silicon sample that Raman thermometry is capable of phonon mean free path (PMFP) spectroscopy. Our experimental approach is similar to the variation of different characteristic length scales <span><math><msub><mrow><mi>l</mi></mrow><mrow><mtext>c</mtext></mrow></msub></math></span> during thermal reflectance measurements in the time or frequency domain (TDTR and FDTR) and transient thermal grating (TTG) spectroscopy. In place of <span><math><msub><mrow><mi>l</mi></mrow><mrow><mtext>c</mtext></mrow></msub></math></span>, we vary the laser focus spot size (<span><math><msub><mrow><mi>w</mi></mrow><mrow><mtext>e</mtext></mrow></msub></math></span>) and the light penetration depth (<span><math><msub><mrow><mi>h</mi></mrow><mrow><mi>α</mi></mrow></msub></math></span>) during one-laser Raman thermometry (1LRT) measurements, enabling control over the size of the temperature probe volume <span><math><mi>V</mi></math></span>. For our largest <span><math><msub><mrow><mi>w</mi></mrow><mrow><mtext>e</mtext></mrow></msub></math></span> values, the derived effective thermal conductivities <span><math><msub><mrow><mi>κ</mi></mrow><mrow><mtext>eff</mtext></mrow></msub></math></span> converge towards the bulk thermal conductivity <span><math><msub><mrow><mi>κ</mi></mrow><mrow><mtext>bulk</mtext></mrow></msub></math></span> for silicon, which we confirm by two-laser Raman thermometry and <em>ab<!--> <!-->initio</em> theory. However, towards smaller <span><math><msub><mrow><mi>w</mi></mrow><mrow><mtext>e</mtext></mrow></msub></math></span> values, we observe a pronounced increase for the <span><math><msub><mrow><mi>κ</mi></mrow><mrow><mtext>eff</mtext></mrow></msub></math></span> values, which amounts up to a factor of 5.3 at 293<!--> <!-->K and even 8.3 at 200<!--> <!-->K. We mainly assign this phenomenon to quasi-ballistic phonon transport and discuss any prominent impact of other factors. As a result, we can compare our measured <span><math><mrow><msub><mrow><mi>κ</mi></mrow><mrow><mtext>eff</mtext></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>w</mi></mrow><mrow><mtext>e</mtext></mrow></msub><mo>)</mo></mrow></mrow></math></span> trends with the thermal accumulation function <span><math><msub><mrow><mi>κ</mi></mrow><mrow><mtext>cum</mtext></mrow></msub></math></span> and its dependence on the phonon mean free path <span><math><msub><mrow><mi>l</mi></mrow><mrow><mtext>ph</mtext></mrow></msub></math></span>, which we derive from <em>ab<!--> <!-->initio</em> solutions of the linearized phonon Boltzmann transport equation (BTE). Since the variation of <span><math><msub><mrow><mi>w</mi></mrow><mrow><mtext>e</mtext></mrow></msub></math></span> can be experimentally cumbersome, we also suggest varying <span><math><mrow><msub><mrow><mi>h</mi></mrow><mrow><mi>α</mi></mrow></msub><mrow><mo>(</mo><mi>λ</mi><mo>)</mo></mrow></mrow></math></span> via the applied Raman laser wavelength <span><math><mi>λ</mi></math></span> during 1LRT. In this regard, we present proof-of-principle 1LRT measurements, yielding a step-like <span><math><mrow><msub><mrow><mi>κ</mi></mrow><mrow><mtext>eff</mtext></mrow></msub><mrow><mo>(</mo><mi>λ</mi><mo>)</mo></mrow></mrow></math></span> trend for four different <span><math><mi>λ</mi></math></span> values, which we also interpret in terms of quasi-ballistic phonon transport. Interestingly, we find that our <span><math><mrow><msub><mrow><mi>κ</mi></mrow><mrow><mtext>eff</mtext></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>w</mi></mrow><mrow><mtext>e</mtext></mrow></msub><mo>)</mo></mrow></mrow></math></span> scaling is opposite to previous TTG results, which can be explained by the actual physical quantity probed. For small <span><math><msub><mrow><mi>w</mi></mrow><mrow><mtext>e</mtext></mrow></msub></math></span> or <span><math><msub><mrow><mi>h</mi></mrow><mrow><mi>α</mi></mrow></msub></math></span> values, 1LRT mimics the situation of a local and/or surfacic heat source in a large matrix, which enables probing of real local <span><math><mi>κ</mi></math></span> values that exceed <span><math><msub><mrow><mi>κ</mi></mrow><mrow><mtext>bulk</mtext></mrow></msub></math></span>. From a theoretical point of view, this was first predicted by Chiloyan et al., (2020), who calculated <span><math><mrow><msub><mrow><mi>κ</mi></mrow><mrow><mtext>eff</mtext></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>w</mi></mrow><mrow><mtext>e</mtext></mrow></msub><mo>)</mo></mrow></mrow></math></span> for different initial phonon distributions in good agreement with our data. To show the generality of our findings, we probed <span><math><mrow><msub><mrow><mi>κ</mi></mrow><mrow><mtext>eff</mtext></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>w</mi></mrow><mrow><mtext>e</mtext></mrow></msub><mo>)</mo></mrow></mrow></math></span> not only for bulk silicon, but also germanium, which is in-line with our previous findings on GaN, see Elhajhasan et al., (2023). Our results shall seed future PMFP spectroscopy based on 1LRT, which can directly be benchmarked against state-of-art theory to probe the effect of, e.g., any nano-structuring by comparison of <span><math><msub><mrow><mi>κ</mi></mrow><mrow><mtext>cum</mtext></mrow></msub></math></span> trends and not only <span><math><mi>κ</mi></math></span> values, aiming to test our understanding of the intricate phonon transport physics.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"57 ","pages":"Article 101784"},"PeriodicalIF":9.7000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phonon mean free path spectroscopy by Raman thermometry\",\"authors\":\"Katharina Dudde ,&nbsp;Mahmoud Elhajhasan ,&nbsp;Guillaume Würsch ,&nbsp;Julian Themann ,&nbsp;Jana Lierath ,&nbsp;Dwaipayan Paul ,&nbsp;Nakib H. Protik ,&nbsp;Giuseppe Romano ,&nbsp;Gordon Callsen\",\"doi\":\"10.1016/j.mtphys.2025.101784\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this work, we exemplify on a bulk silicon sample that Raman thermometry is capable of phonon mean free path (PMFP) spectroscopy. Our experimental approach is similar to the variation of different characteristic length scales <span><math><msub><mrow><mi>l</mi></mrow><mrow><mtext>c</mtext></mrow></msub></math></span> during thermal reflectance measurements in the time or frequency domain (TDTR and FDTR) and transient thermal grating (TTG) spectroscopy. In place of <span><math><msub><mrow><mi>l</mi></mrow><mrow><mtext>c</mtext></mrow></msub></math></span>, we vary the laser focus spot size (<span><math><msub><mrow><mi>w</mi></mrow><mrow><mtext>e</mtext></mrow></msub></math></span>) and the light penetration depth (<span><math><msub><mrow><mi>h</mi></mrow><mrow><mi>α</mi></mrow></msub></math></span>) during one-laser Raman thermometry (1LRT) measurements, enabling control over the size of the temperature probe volume <span><math><mi>V</mi></math></span>. For our largest <span><math><msub><mrow><mi>w</mi></mrow><mrow><mtext>e</mtext></mrow></msub></math></span> values, the derived effective thermal conductivities <span><math><msub><mrow><mi>κ</mi></mrow><mrow><mtext>eff</mtext></mrow></msub></math></span> converge towards the bulk thermal conductivity <span><math><msub><mrow><mi>κ</mi></mrow><mrow><mtext>bulk</mtext></mrow></msub></math></span> for silicon, which we confirm by two-laser Raman thermometry and <em>ab<!--> <!-->initio</em> theory. However, towards smaller <span><math><msub><mrow><mi>w</mi></mrow><mrow><mtext>e</mtext></mrow></msub></math></span> values, we observe a pronounced increase for the <span><math><msub><mrow><mi>κ</mi></mrow><mrow><mtext>eff</mtext></mrow></msub></math></span> values, which amounts up to a factor of 5.3 at 293<!--> <!-->K and even 8.3 at 200<!--> <!-->K. We mainly assign this phenomenon to quasi-ballistic phonon transport and discuss any prominent impact of other factors. As a result, we can compare our measured <span><math><mrow><msub><mrow><mi>κ</mi></mrow><mrow><mtext>eff</mtext></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>w</mi></mrow><mrow><mtext>e</mtext></mrow></msub><mo>)</mo></mrow></mrow></math></span> trends with the thermal accumulation function <span><math><msub><mrow><mi>κ</mi></mrow><mrow><mtext>cum</mtext></mrow></msub></math></span> and its dependence on the phonon mean free path <span><math><msub><mrow><mi>l</mi></mrow><mrow><mtext>ph</mtext></mrow></msub></math></span>, which we derive from <em>ab<!--> <!-->initio</em> solutions of the linearized phonon Boltzmann transport equation (BTE). Since the variation of <span><math><msub><mrow><mi>w</mi></mrow><mrow><mtext>e</mtext></mrow></msub></math></span> can be experimentally cumbersome, we also suggest varying <span><math><mrow><msub><mrow><mi>h</mi></mrow><mrow><mi>α</mi></mrow></msub><mrow><mo>(</mo><mi>λ</mi><mo>)</mo></mrow></mrow></math></span> via the applied Raman laser wavelength <span><math><mi>λ</mi></math></span> during 1LRT. In this regard, we present proof-of-principle 1LRT measurements, yielding a step-like <span><math><mrow><msub><mrow><mi>κ</mi></mrow><mrow><mtext>eff</mtext></mrow></msub><mrow><mo>(</mo><mi>λ</mi><mo>)</mo></mrow></mrow></math></span> trend for four different <span><math><mi>λ</mi></math></span> values, which we also interpret in terms of quasi-ballistic phonon transport. Interestingly, we find that our <span><math><mrow><msub><mrow><mi>κ</mi></mrow><mrow><mtext>eff</mtext></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>w</mi></mrow><mrow><mtext>e</mtext></mrow></msub><mo>)</mo></mrow></mrow></math></span> scaling is opposite to previous TTG results, which can be explained by the actual physical quantity probed. For small <span><math><msub><mrow><mi>w</mi></mrow><mrow><mtext>e</mtext></mrow></msub></math></span> or <span><math><msub><mrow><mi>h</mi></mrow><mrow><mi>α</mi></mrow></msub></math></span> values, 1LRT mimics the situation of a local and/or surfacic heat source in a large matrix, which enables probing of real local <span><math><mi>κ</mi></math></span> values that exceed <span><math><msub><mrow><mi>κ</mi></mrow><mrow><mtext>bulk</mtext></mrow></msub></math></span>. From a theoretical point of view, this was first predicted by Chiloyan et al., (2020), who calculated <span><math><mrow><msub><mrow><mi>κ</mi></mrow><mrow><mtext>eff</mtext></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>w</mi></mrow><mrow><mtext>e</mtext></mrow></msub><mo>)</mo></mrow></mrow></math></span> for different initial phonon distributions in good agreement with our data. To show the generality of our findings, we probed <span><math><mrow><msub><mrow><mi>κ</mi></mrow><mrow><mtext>eff</mtext></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>w</mi></mrow><mrow><mtext>e</mtext></mrow></msub><mo>)</mo></mrow></mrow></math></span> not only for bulk silicon, but also germanium, which is in-line with our previous findings on GaN, see Elhajhasan et al., (2023). Our results shall seed future PMFP spectroscopy based on 1LRT, which can directly be benchmarked against state-of-art theory to probe the effect of, e.g., any nano-structuring by comparison of <span><math><msub><mrow><mi>κ</mi></mrow><mrow><mtext>cum</mtext></mrow></msub></math></span> trends and not only <span><math><mi>κ</mi></math></span> values, aiming to test our understanding of the intricate phonon transport physics.</div></div>\",\"PeriodicalId\":18253,\"journal\":{\"name\":\"Materials Today Physics\",\"volume\":\"57 \",\"pages\":\"Article 101784\"},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2025-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Physics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2542529325001403\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542529325001403","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们举例说明了在一块硅样品上,拉曼测温能够声子平均自由程(PMFP)光谱。我们的实验方法类似于在时域或频域(TDTR和FDTR)和瞬态热光栅(TTG)光谱中测量热反射时不同特征长度尺度lc的变化。在单激光拉曼测温(1LRT)测量中,我们改变了激光焦点光斑尺寸(we)和光穿透深度(hα),从而可以控制温度探头体积v的大小。对于我们最大的we值,推导出的有效热导率κeff收敛于硅的体热导率κbulk,我们通过双激光拉曼测温和从头算理论证实了这一点。然而,在较小的we值上,我们观察到κeff值明显增加,在293 K时达到5.3倍,在200 K时甚至达到8.3倍。我们主要将这种现象归因于准弹道声子输运,并讨论了任何其他因素的显著影响。因此,我们可以比较我们测量到的κeff(we)趋势与热积累函数κcum及其对声子平均自由程lph的依赖,这是我们从线性化声子玻尔兹曼输运方程(BTE)的从头算解中得到的。由于我们的变化在实验上可能很麻烦,我们也建议在1LRT期间通过施加的拉曼激光波长λ来改变hα(λ)。在这方面,我们提出了lrt测量的原理证明,得到了四个不同λ值的阶梯状κeff(λ)趋势,我们也用准弹道声子输运来解释。有趣的是,我们发现我们的κeff(we)缩放与之前的TTG结果相反,这可以用实际探测的物理量来解释。对于较小的we或hα值,1LRT模拟大矩阵中局部和/或表面热源的情况,从而能够探测超过κbulk的真实局部κ值。从理论角度来看,Chiloyan等人(2020)首先预测了这一点,他们计算了不同初始声子分布的κeff(我们),与我们的数据非常吻合。为了显示我们研究结果的普遍性,我们不仅对大块硅进行了研究,还对锗进行了研究,这与我们之前在GaN Elhajhasan等人(2023)的研究结果一致。我们的研究结果将为未来基于1LRT的PMFP光谱奠定基础,该光谱可以直接与最先进的理论进行基准测试,通过比较κcum趋势而不仅仅是κ值来探测诸如任何纳米结构的影响,旨在测试我们对复杂声子输运物理的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Phonon mean free path spectroscopy by Raman thermometry
In this work, we exemplify on a bulk silicon sample that Raman thermometry is capable of phonon mean free path (PMFP) spectroscopy. Our experimental approach is similar to the variation of different characteristic length scales lc during thermal reflectance measurements in the time or frequency domain (TDTR and FDTR) and transient thermal grating (TTG) spectroscopy. In place of lc, we vary the laser focus spot size (we) and the light penetration depth (hα) during one-laser Raman thermometry (1LRT) measurements, enabling control over the size of the temperature probe volume V. For our largest we values, the derived effective thermal conductivities κeff converge towards the bulk thermal conductivity κbulk for silicon, which we confirm by two-laser Raman thermometry and ab initio theory. However, towards smaller we values, we observe a pronounced increase for the κeff values, which amounts up to a factor of 5.3 at 293 K and even 8.3 at 200 K. We mainly assign this phenomenon to quasi-ballistic phonon transport and discuss any prominent impact of other factors. As a result, we can compare our measured κeff(we) trends with the thermal accumulation function κcum and its dependence on the phonon mean free path lph, which we derive from ab initio solutions of the linearized phonon Boltzmann transport equation (BTE). Since the variation of we can be experimentally cumbersome, we also suggest varying hα(λ) via the applied Raman laser wavelength λ during 1LRT. In this regard, we present proof-of-principle 1LRT measurements, yielding a step-like κeff(λ) trend for four different λ values, which we also interpret in terms of quasi-ballistic phonon transport. Interestingly, we find that our κeff(we) scaling is opposite to previous TTG results, which can be explained by the actual physical quantity probed. For small we or hα values, 1LRT mimics the situation of a local and/or surfacic heat source in a large matrix, which enables probing of real local κ values that exceed κbulk. From a theoretical point of view, this was first predicted by Chiloyan et al., (2020), who calculated κeff(we) for different initial phonon distributions in good agreement with our data. To show the generality of our findings, we probed κeff(we) not only for bulk silicon, but also germanium, which is in-line with our previous findings on GaN, see Elhajhasan et al., (2023). Our results shall seed future PMFP spectroscopy based on 1LRT, which can directly be benchmarked against state-of-art theory to probe the effect of, e.g., any nano-structuring by comparison of κcum trends and not only κ values, aiming to test our understanding of the intricate phonon transport physics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Today Physics
Materials Today Physics Materials Science-General Materials Science
CiteScore
14.00
自引率
7.80%
发文量
284
审稿时长
15 days
期刊介绍: Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信