Co/N共掺杂纳米碳纤维电催化剂在锌-空气电池中的自供电过氧化氢电合成

IF 9.7 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Shengchang Li, Jing Liu, Shuo Li, Jiansheng Song, Xuejing Cui, Luhua Jiang
{"title":"Co/N共掺杂纳米碳纤维电催化剂在锌-空气电池中的自供电过氧化氢电合成","authors":"Shengchang Li,&nbsp;Jing Liu,&nbsp;Shuo Li,&nbsp;Jiansheng Song,&nbsp;Xuejing Cui,&nbsp;Luhua Jiang","doi":"10.1016/j.mtphys.2025.101806","DOIUrl":null,"url":null,"abstract":"<div><div>The synthesis of hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) via the two-electron oxygen reduction reaction (2e<sup>−</sup> ORR) is a promising alternative to the conventional anthraquinone process. Herein, we report an integrated system for catalyzing the oxygen reduction reaction (ORR) in zinc-air batteries (ZABs) using a Co/N co-doped carbon nanofiber electrocatalyst (CoNC@CNF-900/OPT) fabricated via electrospinning. The optimized CoNC@CNF-900/OPT achieved a half-wave potential (E<sub>1/2</sub>) of 0.786 V and an H<sub>2</sub>O<sub>2</sub> selectivity of 62.5 % at 0.3 V vs. RHE. In an H-type electrolytic cell, the catalyst exhibited an H<sub>2</sub>O<sub>2</sub> production rate of 1791 mmol g<sub>cat</sub><sup>−1</sup> h<sup>−1</sup>. When employed as the cathode in ZABs, the system delivered a peak power density of 179 mW cm<sup>−2</sup> and maintained 93.5 % initial activity after 24 h of operation at 20 mA cm<sup>−2</sup>. Furthermore, in a flow-state ZAB configuration, the catalyst delivered an integrated performance with a peak power density of 99.31 mW cm<sup>−2</sup> and an H<sub>2</sub>O<sub>2</sub> yield of 33.55 mmol g<sub>cat</sub><sup>−1</sup> h<sup>−1</sup>. This work highlights the potential of ZABs for in situ H<sub>2</sub>O<sub>2</sub> production, thereby providing a technological foundation for developing multifunctional devices that integrate energy supply and chemical synthesis.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"57 ","pages":"Article 101806"},"PeriodicalIF":9.7000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-powered hydrogen peroxide electrosynthesis via zinc-air batteries with Co/N co-doped carbon nanofiber electrocatalyst\",\"authors\":\"Shengchang Li,&nbsp;Jing Liu,&nbsp;Shuo Li,&nbsp;Jiansheng Song,&nbsp;Xuejing Cui,&nbsp;Luhua Jiang\",\"doi\":\"10.1016/j.mtphys.2025.101806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The synthesis of hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) via the two-electron oxygen reduction reaction (2e<sup>−</sup> ORR) is a promising alternative to the conventional anthraquinone process. Herein, we report an integrated system for catalyzing the oxygen reduction reaction (ORR) in zinc-air batteries (ZABs) using a Co/N co-doped carbon nanofiber electrocatalyst (CoNC@CNF-900/OPT) fabricated via electrospinning. The optimized CoNC@CNF-900/OPT achieved a half-wave potential (E<sub>1/2</sub>) of 0.786 V and an H<sub>2</sub>O<sub>2</sub> selectivity of 62.5 % at 0.3 V vs. RHE. In an H-type electrolytic cell, the catalyst exhibited an H<sub>2</sub>O<sub>2</sub> production rate of 1791 mmol g<sub>cat</sub><sup>−1</sup> h<sup>−1</sup>. When employed as the cathode in ZABs, the system delivered a peak power density of 179 mW cm<sup>−2</sup> and maintained 93.5 % initial activity after 24 h of operation at 20 mA cm<sup>−2</sup>. Furthermore, in a flow-state ZAB configuration, the catalyst delivered an integrated performance with a peak power density of 99.31 mW cm<sup>−2</sup> and an H<sub>2</sub>O<sub>2</sub> yield of 33.55 mmol g<sub>cat</sub><sup>−1</sup> h<sup>−1</sup>. This work highlights the potential of ZABs for in situ H<sub>2</sub>O<sub>2</sub> production, thereby providing a technological foundation for developing multifunctional devices that integrate energy supply and chemical synthesis.</div></div>\",\"PeriodicalId\":18253,\"journal\":{\"name\":\"Materials Today Physics\",\"volume\":\"57 \",\"pages\":\"Article 101806\"},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2025-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Physics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2542529325001622\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542529325001622","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

通过双电子氧还原反应(2e- ORR)合成过氧化氢(H2O2)是替代传统蒽醌工艺的一种很有前途的方法。本文报道了一种采用静电纺丝制备的Co/N共掺杂碳纳米纤维电催化剂(CoNC@CNF-900/OPT)催化锌-空气电池(ZABs)中氧还原反应(ORR)的集成系统。与RHE相比,优化后的CoNC@CNF-900/OPT在0.3 V时的半波电位(E1/2)为0.786 V, H2O2选择性为62.5%。在h型电解槽中,催化剂的H2O2产率为1791 mmol gcat-1 h-1。当作为ZABs的阴极时,该系统提供了179 mW cm-2的峰值功率密度,并在20 mA cm-2下工作24小时后保持了93.5%的初始活性。此外,在流动态ZAB配置下,催化剂的综合性能为峰值功率密度为99.31 mW cm-2, H2O2产率为33.55 mmol gcat-1 h-1。这项工作强调了ZABs在原位生产H2O2方面的潜力,从而为开发集能源供应和化学合成为一体的多功能装置提供了技术基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Self-powered hydrogen peroxide electrosynthesis via zinc-air batteries with Co/N co-doped carbon nanofiber electrocatalyst
The synthesis of hydrogen peroxide (H2O2) via the two-electron oxygen reduction reaction (2e ORR) is a promising alternative to the conventional anthraquinone process. Herein, we report an integrated system for catalyzing the oxygen reduction reaction (ORR) in zinc-air batteries (ZABs) using a Co/N co-doped carbon nanofiber electrocatalyst (CoNC@CNF-900/OPT) fabricated via electrospinning. The optimized CoNC@CNF-900/OPT achieved a half-wave potential (E1/2) of 0.786 V and an H2O2 selectivity of 62.5 % at 0.3 V vs. RHE. In an H-type electrolytic cell, the catalyst exhibited an H2O2 production rate of 1791 mmol gcat−1 h−1. When employed as the cathode in ZABs, the system delivered a peak power density of 179 mW cm−2 and maintained 93.5 % initial activity after 24 h of operation at 20 mA cm−2. Furthermore, in a flow-state ZAB configuration, the catalyst delivered an integrated performance with a peak power density of 99.31 mW cm−2 and an H2O2 yield of 33.55 mmol gcat−1 h−1. This work highlights the potential of ZABs for in situ H2O2 production, thereby providing a technological foundation for developing multifunctional devices that integrate energy supply and chemical synthesis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Today Physics
Materials Today Physics Materials Science-General Materials Science
CiteScore
14.00
自引率
7.80%
发文量
284
审稿时长
15 days
期刊介绍: Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信