基于多阶段训练和深度监督的腹部三维多器官分割方法。

IF 1.7 3区 医学 Q3 INSTRUMENTS & INSTRUMENTATION
Panpan Wu, Peng An, Ziping Zhao, Runpeng Guo, Xiaofeng Ma, Yue Qu, Yurou Xu, Hengyong Yu
{"title":"基于多阶段训练和深度监督的腹部三维多器官分割方法。","authors":"Panpan Wu, Peng An, Ziping Zhao, Runpeng Guo, Xiaofeng Ma, Yue Qu, Yurou Xu, Hengyong Yu","doi":"10.1177/08953996251355806","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate X-ray Computed tomography (CT) image segmentation of the abdominal organs is fundamental for diagnosing abdominal diseases, planning cancer treatment, and formulating radiotherapy strategies. However, the existing deep learning based models for three-dimensional (3D) CT image abdominal multi-organ segmentation face challenges, including complex organ distribution, scarcity of labeled data, and diversity of organ structures, leading to difficulties in model training and convergence and low segmentation accuracy. To address these issues, a novel multi-stage training and a deep supervision model based segmentation approach is proposed. It primary integrates multi-stage training, pseudo- labeling technique, and a developed deep supervision model with attention mechanism (DLAU-Net), specifically designed for 3D abdominal multi-organ segmentation. The DLAU-Net enhances segmentation performance and model adaptability through an improved network architecture. The multi-stage training strategy accelerates model convergence and enhances generalizability, effectively addressing the diversity of abdominal organ structures. The introduction of pseudo-labeling training alleviates the bottleneck of labeled data scarcity and further improves the model's generalization performance and training efficiency. Experiments were conducted on a large dataset provided by the FLARE 2023 Challenge. Comprehensive ablation studies and comparative experiments were conducted to validate the effectiveness of the proposed method. Our method achieves an average organ accuracy (AVG) of 90.5% and a Dice Similarity Coefficient (DSC) of 89.05% and exhibits exceptional performance in terms of training speed and handling data diversity, particularly in the segmentation tasks of critical abdominal organs such as the liver, spleen, and kidneys, significantly outperforming existing comparative methods.</p>","PeriodicalId":49948,"journal":{"name":"Journal of X-Ray Science and Technology","volume":" ","pages":"8953996251355806"},"PeriodicalIF":1.7000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A multi-stage training and deep supervision based segmentation approach for 3D abdominal multi-organ segmentation.\",\"authors\":\"Panpan Wu, Peng An, Ziping Zhao, Runpeng Guo, Xiaofeng Ma, Yue Qu, Yurou Xu, Hengyong Yu\",\"doi\":\"10.1177/08953996251355806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Accurate X-ray Computed tomography (CT) image segmentation of the abdominal organs is fundamental for diagnosing abdominal diseases, planning cancer treatment, and formulating radiotherapy strategies. However, the existing deep learning based models for three-dimensional (3D) CT image abdominal multi-organ segmentation face challenges, including complex organ distribution, scarcity of labeled data, and diversity of organ structures, leading to difficulties in model training and convergence and low segmentation accuracy. To address these issues, a novel multi-stage training and a deep supervision model based segmentation approach is proposed. It primary integrates multi-stage training, pseudo- labeling technique, and a developed deep supervision model with attention mechanism (DLAU-Net), specifically designed for 3D abdominal multi-organ segmentation. The DLAU-Net enhances segmentation performance and model adaptability through an improved network architecture. The multi-stage training strategy accelerates model convergence and enhances generalizability, effectively addressing the diversity of abdominal organ structures. The introduction of pseudo-labeling training alleviates the bottleneck of labeled data scarcity and further improves the model's generalization performance and training efficiency. Experiments were conducted on a large dataset provided by the FLARE 2023 Challenge. Comprehensive ablation studies and comparative experiments were conducted to validate the effectiveness of the proposed method. Our method achieves an average organ accuracy (AVG) of 90.5% and a Dice Similarity Coefficient (DSC) of 89.05% and exhibits exceptional performance in terms of training speed and handling data diversity, particularly in the segmentation tasks of critical abdominal organs such as the liver, spleen, and kidneys, significantly outperforming existing comparative methods.</p>\",\"PeriodicalId\":49948,\"journal\":{\"name\":\"Journal of X-Ray Science and Technology\",\"volume\":\" \",\"pages\":\"8953996251355806\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of X-Ray Science and Technology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/08953996251355806\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of X-Ray Science and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/08953996251355806","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

摘要

腹部器官的x线计算机断层扫描(CT)图像的准确分割是诊断腹部疾病、规划癌症治疗和制定放射治疗策略的基础。然而,现有的基于深度学习的三维CT图像腹部多器官分割模型面临着器官分布复杂、标记数据稀缺、器官结构多样性等问题,导致模型训练和收敛困难,分割精度不高。为了解决这些问题,提出了一种新的基于多阶段训练和深度监督模型的分割方法。它主要集成了多阶段训练、伪标记技术和开发的具有注意机制的深度监督模型(d劳-网),专为腹部三维多器官分割而设计。dau - net通过改进的网络结构增强了分段性能和模型适应性。多阶段训练策略加速了模型的收敛性,增强了模型的泛化性,有效地解决了腹部器官结构的多样性问题。伪标注训练的引入缓解了标注数据稀缺性的瓶颈,进一步提高了模型的泛化性能和训练效率。实验是在FLARE 2023挑战赛提供的大型数据集上进行的。通过综合烧蚀实验和对比实验验证了该方法的有效性。该方法的平均器官准确率(AVG)为90.5%,骰子相似系数(DSC)为89.05%,在训练速度和处理数据多样性方面表现出色,特别是在肝脏、脾脏和肾脏等关键腹部器官的分割任务中,显著优于现有的比较方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A multi-stage training and deep supervision based segmentation approach for 3D abdominal multi-organ segmentation.

Accurate X-ray Computed tomography (CT) image segmentation of the abdominal organs is fundamental for diagnosing abdominal diseases, planning cancer treatment, and formulating radiotherapy strategies. However, the existing deep learning based models for three-dimensional (3D) CT image abdominal multi-organ segmentation face challenges, including complex organ distribution, scarcity of labeled data, and diversity of organ structures, leading to difficulties in model training and convergence and low segmentation accuracy. To address these issues, a novel multi-stage training and a deep supervision model based segmentation approach is proposed. It primary integrates multi-stage training, pseudo- labeling technique, and a developed deep supervision model with attention mechanism (DLAU-Net), specifically designed for 3D abdominal multi-organ segmentation. The DLAU-Net enhances segmentation performance and model adaptability through an improved network architecture. The multi-stage training strategy accelerates model convergence and enhances generalizability, effectively addressing the diversity of abdominal organ structures. The introduction of pseudo-labeling training alleviates the bottleneck of labeled data scarcity and further improves the model's generalization performance and training efficiency. Experiments were conducted on a large dataset provided by the FLARE 2023 Challenge. Comprehensive ablation studies and comparative experiments were conducted to validate the effectiveness of the proposed method. Our method achieves an average organ accuracy (AVG) of 90.5% and a Dice Similarity Coefficient (DSC) of 89.05% and exhibits exceptional performance in terms of training speed and handling data diversity, particularly in the segmentation tasks of critical abdominal organs such as the liver, spleen, and kidneys, significantly outperforming existing comparative methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.90
自引率
23.30%
发文量
150
审稿时长
3 months
期刊介绍: Research areas within the scope of the journal include: Interaction of x-rays with matter: x-ray phenomena, biological effects of radiation, radiation safety and optical constants X-ray sources: x-rays from synchrotrons, x-ray lasers, plasmas, and other sources, conventional or unconventional Optical elements: grazing incidence optics, multilayer mirrors, zone plates, gratings, other diffraction optics Optical instruments: interferometers, spectrometers, microscopes, telescopes, microprobes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信