Taisei Kimura, Kenshin Yoshida, Kohei Narazaki, Kento Yanagihashi, Shun Hirashima, Yua Oyama, Khadga S. Thakuri, Yuta Ito, Satoshi Asakura, Motofumi Kashiwagi, Matthew S. White, Takayuki Chiba and Akito Masuhara
{"title":"量身定制的配体设计使钙钛矿纳米晶体全面钝化发光二极管†","authors":"Taisei Kimura, Kenshin Yoshida, Kohei Narazaki, Kento Yanagihashi, Shun Hirashima, Yua Oyama, Khadga S. Thakuri, Yuta Ito, Satoshi Asakura, Motofumi Kashiwagi, Matthew S. White, Takayuki Chiba and Akito Masuhara","doi":"10.1039/D5TC01455G","DOIUrl":null,"url":null,"abstract":"<p >Ever since the emergence of perovskite nanocrystals (PeNCs), their unique properties have attracted significant attention in both practical and academic fields, precisely because the ligands accentuate these characteristics. There are many examples of improving the optical properties, dispersibility, and durability of PeNCs by designing the ligands, and the usefulness of ligand engineering has been demonstrated. However, due to the emergence of highly complex issues stemming from the crystal and surface states of PeNCs, the harnessing of ligand design for LEDs—one of the major applications of PeNCs—remains limited. In this study, we focused on three aspects of the ligand's molecular structure: the head, tail, and counter anion, and by designing a structure that assigns distinct roles to each component, we comprehensively passivated the surface of PeNCs, thereby enabling their application in LEDs. The designed ligands relieved the crystal strain on the PeNCs, reduced the electrical insulation, and improved the optical properties by providing an ideal chemical surface. As a result of the synergistic effects, the EQE exhibits a 2.3-fold enhancement over the control devices, achieving a high value of 17.6%. This study not only proposes a ligand-engineering approach but also highlights this strategy as a new frontier in PeNCs research.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":" 28","pages":" 14202-14210"},"PeriodicalIF":5.1000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tailored ligand design enabling comprehensive passivation of perovskite nanocrystals for light-emitting diodes†\",\"authors\":\"Taisei Kimura, Kenshin Yoshida, Kohei Narazaki, Kento Yanagihashi, Shun Hirashima, Yua Oyama, Khadga S. Thakuri, Yuta Ito, Satoshi Asakura, Motofumi Kashiwagi, Matthew S. White, Takayuki Chiba and Akito Masuhara\",\"doi\":\"10.1039/D5TC01455G\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Ever since the emergence of perovskite nanocrystals (PeNCs), their unique properties have attracted significant attention in both practical and academic fields, precisely because the ligands accentuate these characteristics. There are many examples of improving the optical properties, dispersibility, and durability of PeNCs by designing the ligands, and the usefulness of ligand engineering has been demonstrated. However, due to the emergence of highly complex issues stemming from the crystal and surface states of PeNCs, the harnessing of ligand design for LEDs—one of the major applications of PeNCs—remains limited. In this study, we focused on three aspects of the ligand's molecular structure: the head, tail, and counter anion, and by designing a structure that assigns distinct roles to each component, we comprehensively passivated the surface of PeNCs, thereby enabling their application in LEDs. The designed ligands relieved the crystal strain on the PeNCs, reduced the electrical insulation, and improved the optical properties by providing an ideal chemical surface. As a result of the synergistic effects, the EQE exhibits a 2.3-fold enhancement over the control devices, achieving a high value of 17.6%. This study not only proposes a ligand-engineering approach but also highlights this strategy as a new frontier in PeNCs research.</p>\",\"PeriodicalId\":84,\"journal\":{\"name\":\"Journal of Materials Chemistry C\",\"volume\":\" 28\",\"pages\":\" 14202-14210\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry C\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/tc/d5tc01455g\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tc/d5tc01455g","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Tailored ligand design enabling comprehensive passivation of perovskite nanocrystals for light-emitting diodes†
Ever since the emergence of perovskite nanocrystals (PeNCs), their unique properties have attracted significant attention in both practical and academic fields, precisely because the ligands accentuate these characteristics. There are many examples of improving the optical properties, dispersibility, and durability of PeNCs by designing the ligands, and the usefulness of ligand engineering has been demonstrated. However, due to the emergence of highly complex issues stemming from the crystal and surface states of PeNCs, the harnessing of ligand design for LEDs—one of the major applications of PeNCs—remains limited. In this study, we focused on three aspects of the ligand's molecular structure: the head, tail, and counter anion, and by designing a structure that assigns distinct roles to each component, we comprehensively passivated the surface of PeNCs, thereby enabling their application in LEDs. The designed ligands relieved the crystal strain on the PeNCs, reduced the electrical insulation, and improved the optical properties by providing an ideal chemical surface. As a result of the synergistic effects, the EQE exhibits a 2.3-fold enhancement over the control devices, achieving a high value of 17.6%. This study not only proposes a ligand-engineering approach but also highlights this strategy as a new frontier in PeNCs research.
期刊介绍:
The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study:
Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability.
Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine.
Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices.
Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive.
Bioelectronics
Conductors
Detectors
Dielectrics
Displays
Ferroelectrics
Lasers
LEDs
Lighting
Liquid crystals
Memory
Metamaterials
Multiferroics
Photonics
Photovoltaics
Semiconductors
Sensors
Single molecule conductors
Spintronics
Superconductors
Thermoelectrics
Topological insulators
Transistors