Mercedes Marcos, Alberto Concellón, Almudena Terrel, Rosa I. Merino, Rosa M. Tejedor, Joaquín Barberá, José L. Serrano and Santiago Uriel
{"title":"卤素键合离子液晶:超分子组织和离子输运†","authors":"Mercedes Marcos, Alberto Concellón, Almudena Terrel, Rosa I. Merino, Rosa M. Tejedor, Joaquín Barberá, José L. Serrano and Santiago Uriel","doi":"10.1039/D5TC01507C","DOIUrl":null,"url":null,"abstract":"<p >Ionic liquid crystals (ILCs) are emerging materials that combine the anisotropic self-assembly of liquid crystals with the ionic conductivity of ionic liquids, making them promising candidates for electrochemical applications such as ion-conducting membranes and next-generation electrolytes. In this work, we report the synthesis and characterization of a series of 1-alkyl-3-halopyridinium halides, where both the cationic and anionic components participate in halogen bonding, leading to enhanced mesophase stability and well-defined ionic nanochannels. Compounds with alkyl chains of 12 carbons or longer exhibit Smectic A liquid crystalline phases, with their stability increasing with chain length and halogen bond strength. X-ray diffraction analysis confirms the role of halogen bonding in driving molecular self-assembly and charge segregation, key factors in mesophase formation. Ionic conductivity measurements demonstrate that these ILCs facilitate ion transport through their nanosegregated ionic domains, with conductivities comparable to other liquid crystalline electrolytes. These findings highlight the potential of halogen-bonded ILCs as functional materials for electrochemical devices, providing a tunable platform for the development of advanced ion-conducting materials.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":" 28","pages":" 14657-14664"},"PeriodicalIF":5.1000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/tc/d5tc01507c?page=search","citationCount":"0","resultStr":"{\"title\":\"Halogen-bonded ionic liquid crystals: supramolecular organization and ionic transport†\",\"authors\":\"Mercedes Marcos, Alberto Concellón, Almudena Terrel, Rosa I. Merino, Rosa M. Tejedor, Joaquín Barberá, José L. Serrano and Santiago Uriel\",\"doi\":\"10.1039/D5TC01507C\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Ionic liquid crystals (ILCs) are emerging materials that combine the anisotropic self-assembly of liquid crystals with the ionic conductivity of ionic liquids, making them promising candidates for electrochemical applications such as ion-conducting membranes and next-generation electrolytes. In this work, we report the synthesis and characterization of a series of 1-alkyl-3-halopyridinium halides, where both the cationic and anionic components participate in halogen bonding, leading to enhanced mesophase stability and well-defined ionic nanochannels. Compounds with alkyl chains of 12 carbons or longer exhibit Smectic A liquid crystalline phases, with their stability increasing with chain length and halogen bond strength. X-ray diffraction analysis confirms the role of halogen bonding in driving molecular self-assembly and charge segregation, key factors in mesophase formation. Ionic conductivity measurements demonstrate that these ILCs facilitate ion transport through their nanosegregated ionic domains, with conductivities comparable to other liquid crystalline electrolytes. These findings highlight the potential of halogen-bonded ILCs as functional materials for electrochemical devices, providing a tunable platform for the development of advanced ion-conducting materials.</p>\",\"PeriodicalId\":84,\"journal\":{\"name\":\"Journal of Materials Chemistry C\",\"volume\":\" 28\",\"pages\":\" 14657-14664\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/tc/d5tc01507c?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry C\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/tc/d5tc01507c\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tc/d5tc01507c","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Halogen-bonded ionic liquid crystals: supramolecular organization and ionic transport†
Ionic liquid crystals (ILCs) are emerging materials that combine the anisotropic self-assembly of liquid crystals with the ionic conductivity of ionic liquids, making them promising candidates for electrochemical applications such as ion-conducting membranes and next-generation electrolytes. In this work, we report the synthesis and characterization of a series of 1-alkyl-3-halopyridinium halides, where both the cationic and anionic components participate in halogen bonding, leading to enhanced mesophase stability and well-defined ionic nanochannels. Compounds with alkyl chains of 12 carbons or longer exhibit Smectic A liquid crystalline phases, with their stability increasing with chain length and halogen bond strength. X-ray diffraction analysis confirms the role of halogen bonding in driving molecular self-assembly and charge segregation, key factors in mesophase formation. Ionic conductivity measurements demonstrate that these ILCs facilitate ion transport through their nanosegregated ionic domains, with conductivities comparable to other liquid crystalline electrolytes. These findings highlight the potential of halogen-bonded ILCs as functional materials for electrochemical devices, providing a tunable platform for the development of advanced ion-conducting materials.
期刊介绍:
The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study:
Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability.
Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine.
Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices.
Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive.
Bioelectronics
Conductors
Detectors
Dielectrics
Displays
Ferroelectrics
Lasers
LEDs
Lighting
Liquid crystals
Memory
Metamaterials
Multiferroics
Photonics
Photovoltaics
Semiconductors
Sensors
Single molecule conductors
Spintronics
Superconductors
Thermoelectrics
Topological insulators
Transistors