海底电缆旋转不变声呐图像分割

IF 5.3 2区 工程技术 Q1 ENGINEERING, CIVIL
Songbo Xu;He Shen;Yixin Yang
{"title":"海底电缆旋转不变声呐图像分割","authors":"Songbo Xu;He Shen;Yixin Yang","doi":"10.1109/JOE.2025.3557927","DOIUrl":null,"url":null,"abstract":"Undersea cable detection is a prerequisite for cable maintenance and repair. However, extracting cables from side-scan sonar images is challenging due to the lack of details and interference from seabed sediments. In this article, an automatic rotation-invariant segmentation method for undersea cables is proposed. First, a filter based on the curvelet transform is designed to extract features of cables automatically. Second, a 2-D constant false alarm rate detector is used for feature denoising. Third, a morphology repair method is proposed to fulfill features that have been missed during feature extraction and image denoising. Finally, the maximum connected area in images is retained for cable segmentation. Results show that the proposed method can extract cables accurately. Four performance indicators, including structural similarity index, precision, pixel accuracy, and intersection over union reach 0.9810, 0.6108, 0.8348, and 0.8915, respectively. Consistent performance has been observed in images with different cable postures.","PeriodicalId":13191,"journal":{"name":"IEEE Journal of Oceanic Engineering","volume":"50 3","pages":"2345-2354"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rotation Invariant Sonar Image Segmentation for Undersea Cables\",\"authors\":\"Songbo Xu;He Shen;Yixin Yang\",\"doi\":\"10.1109/JOE.2025.3557927\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Undersea cable detection is a prerequisite for cable maintenance and repair. However, extracting cables from side-scan sonar images is challenging due to the lack of details and interference from seabed sediments. In this article, an automatic rotation-invariant segmentation method for undersea cables is proposed. First, a filter based on the curvelet transform is designed to extract features of cables automatically. Second, a 2-D constant false alarm rate detector is used for feature denoising. Third, a morphology repair method is proposed to fulfill features that have been missed during feature extraction and image denoising. Finally, the maximum connected area in images is retained for cable segmentation. Results show that the proposed method can extract cables accurately. Four performance indicators, including structural similarity index, precision, pixel accuracy, and intersection over union reach 0.9810, 0.6108, 0.8348, and 0.8915, respectively. Consistent performance has been observed in images with different cable postures.\",\"PeriodicalId\":13191,\"journal\":{\"name\":\"IEEE Journal of Oceanic Engineering\",\"volume\":\"50 3\",\"pages\":\"2345-2354\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Oceanic Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11005641/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Oceanic Engineering","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11005641/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

海底电缆检测是海底电缆维护和维修的前提条件。然而,由于缺乏细节和海底沉积物的干扰,从侧扫声纳图像中提取电缆是具有挑战性的。本文提出了一种海底电缆自动旋转不变分割方法。首先,设计了一种基于曲波变换的滤波器,自动提取电缆的特征;其次,采用二维恒虚警率检测器进行特征去噪。第三,提出了一种形态学修复方法来弥补在特征提取和图像去噪过程中缺失的特征。最后,保留图像中最大的连通面积进行电缆分割。结果表明,该方法能够准确地提取出电缆。结构相似度、精度、像素精度、交集/并度四项性能指标分别达到0.9810、0.6108、0.8348、0.8915。在不同缆索姿势的图像中观察到一致的表现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rotation Invariant Sonar Image Segmentation for Undersea Cables
Undersea cable detection is a prerequisite for cable maintenance and repair. However, extracting cables from side-scan sonar images is challenging due to the lack of details and interference from seabed sediments. In this article, an automatic rotation-invariant segmentation method for undersea cables is proposed. First, a filter based on the curvelet transform is designed to extract features of cables automatically. Second, a 2-D constant false alarm rate detector is used for feature denoising. Third, a morphology repair method is proposed to fulfill features that have been missed during feature extraction and image denoising. Finally, the maximum connected area in images is retained for cable segmentation. Results show that the proposed method can extract cables accurately. Four performance indicators, including structural similarity index, precision, pixel accuracy, and intersection over union reach 0.9810, 0.6108, 0.8348, and 0.8915, respectively. Consistent performance has been observed in images with different cable postures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Journal of Oceanic Engineering
IEEE Journal of Oceanic Engineering 工程技术-工程:大洋
CiteScore
9.60
自引率
12.20%
发文量
86
审稿时长
12 months
期刊介绍: The IEEE Journal of Oceanic Engineering (ISSN 0364-9059) is the online-only quarterly publication of the IEEE Oceanic Engineering Society (IEEE OES). The scope of the Journal is the field of interest of the IEEE OES, which encompasses all aspects of science, engineering, and technology that address research, development, and operations pertaining to all bodies of water. This includes the creation of new capabilities and technologies from concept design through prototypes, testing, and operational systems to sense, explore, understand, develop, use, and responsibly manage natural resources.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信