Jongmin Ahn;Geun-Ho Park;Wanjin Kim;Hyung-Moon Kim;Dong-Hun Lee
{"title":"仿生水下通信的研究趋势及技术成熟度分析","authors":"Jongmin Ahn;Geun-Ho Park;Wanjin Kim;Hyung-Moon Kim;Dong-Hun Lee","doi":"10.1109/JOE.2025.3553982","DOIUrl":null,"url":null,"abstract":"Underwater biomimetic communication (UBC) technology has been studied to overcome the restricted physical covertness of artificial acoustical communication signals. Recent advancements have demonstrated data transmission at 300 b/s with imperceptible mimicry levels and communication distances of up to 60 km. While these results have raised expectations for practical applications, the actual performance and maturity of this technology have remained unclear. This article investigates and evaluates existing biomimetic communication methods to clarify the current level of UBC technology to plan a development strategy. To analyze their performance, we classified them based on sound types, such as whistles and clicks, and modulation techniques. Simultaneously, the technological maturity of these methods is also assessed using the technical readiness level framework. The results show that biomimetic communication could be a more promising solution for military underwater communication requiring covertness. Finally, we suggest research directions to further develop this technology into a fully operational system.","PeriodicalId":13191,"journal":{"name":"IEEE Journal of Oceanic Engineering","volume":"50 3","pages":"1676-1702"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10993376","citationCount":"0","resultStr":"{\"title\":\"Analysis of Research Trends and Technological Maturity of Biomimetic Underwater Communication\",\"authors\":\"Jongmin Ahn;Geun-Ho Park;Wanjin Kim;Hyung-Moon Kim;Dong-Hun Lee\",\"doi\":\"10.1109/JOE.2025.3553982\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Underwater biomimetic communication (UBC) technology has been studied to overcome the restricted physical covertness of artificial acoustical communication signals. Recent advancements have demonstrated data transmission at 300 b/s with imperceptible mimicry levels and communication distances of up to 60 km. While these results have raised expectations for practical applications, the actual performance and maturity of this technology have remained unclear. This article investigates and evaluates existing biomimetic communication methods to clarify the current level of UBC technology to plan a development strategy. To analyze their performance, we classified them based on sound types, such as whistles and clicks, and modulation techniques. Simultaneously, the technological maturity of these methods is also assessed using the technical readiness level framework. The results show that biomimetic communication could be a more promising solution for military underwater communication requiring covertness. Finally, we suggest research directions to further develop this technology into a fully operational system.\",\"PeriodicalId\":13191,\"journal\":{\"name\":\"IEEE Journal of Oceanic Engineering\",\"volume\":\"50 3\",\"pages\":\"1676-1702\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10993376\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Oceanic Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10993376/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Oceanic Engineering","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10993376/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Analysis of Research Trends and Technological Maturity of Biomimetic Underwater Communication
Underwater biomimetic communication (UBC) technology has been studied to overcome the restricted physical covertness of artificial acoustical communication signals. Recent advancements have demonstrated data transmission at 300 b/s with imperceptible mimicry levels and communication distances of up to 60 km. While these results have raised expectations for practical applications, the actual performance and maturity of this technology have remained unclear. This article investigates and evaluates existing biomimetic communication methods to clarify the current level of UBC technology to plan a development strategy. To analyze their performance, we classified them based on sound types, such as whistles and clicks, and modulation techniques. Simultaneously, the technological maturity of these methods is also assessed using the technical readiness level framework. The results show that biomimetic communication could be a more promising solution for military underwater communication requiring covertness. Finally, we suggest research directions to further develop this technology into a fully operational system.
期刊介绍:
The IEEE Journal of Oceanic Engineering (ISSN 0364-9059) is the online-only quarterly publication of the IEEE Oceanic Engineering Society (IEEE OES). The scope of the Journal is the field of interest of the IEEE OES, which encompasses all aspects of science, engineering, and technology that address research, development, and operations pertaining to all bodies of water. This includes the creation of new capabilities and technologies from concept design through prototypes, testing, and operational systems to sense, explore, understand, develop, use, and responsibly manage natural resources.