视线引导:学会向前看

IF 5.3 2区 工程技术 Q1 ENGINEERING, CIVIL
Eirik Lothe Foseid;Erlend Andreas Basso;Henrik M. Schmidt-Didlaukies;Kristin Ytterstad Pettersen;Jan Tommy Gravdahl
{"title":"视线引导:学会向前看","authors":"Eirik Lothe Foseid;Erlend Andreas Basso;Henrik M. Schmidt-Didlaukies;Kristin Ytterstad Pettersen;Jan Tommy Gravdahl","doi":"10.1109/JOE.2024.3503765","DOIUrl":null,"url":null,"abstract":"This article introduces a novel line-of-sight (LOS) guidance approach utilizing a neural network to parameterize the lookahead distance. We prove that the proposed guidance law renders a compact set containing the origin uniformly globally asymptotically stable (UGAS) for the closed-loop system. Importantly, if the sideways velocity is zero, the proposed guidance law renders the origin of the closed-loop system UGAS. By employing a neural network to parameterize the lookahead distance, the learning process results in a locally optimal lookahead distance for a given performance metric, and allows for nonlinear variation of the lookahead distance based on arbitrary input. We demonstrate how the proposed approach outperforms several state-of-the-art LOS guidance schemes utilizing time-varying lookahead distances.","PeriodicalId":13191,"journal":{"name":"IEEE Journal of Oceanic Engineering","volume":"50 3","pages":"1637-1646"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Line-of-Sight Guidance: Learning to Look Ahead\",\"authors\":\"Eirik Lothe Foseid;Erlend Andreas Basso;Henrik M. Schmidt-Didlaukies;Kristin Ytterstad Pettersen;Jan Tommy Gravdahl\",\"doi\":\"10.1109/JOE.2024.3503765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article introduces a novel line-of-sight (LOS) guidance approach utilizing a neural network to parameterize the lookahead distance. We prove that the proposed guidance law renders a compact set containing the origin uniformly globally asymptotically stable (UGAS) for the closed-loop system. Importantly, if the sideways velocity is zero, the proposed guidance law renders the origin of the closed-loop system UGAS. By employing a neural network to parameterize the lookahead distance, the learning process results in a locally optimal lookahead distance for a given performance metric, and allows for nonlinear variation of the lookahead distance based on arbitrary input. We demonstrate how the proposed approach outperforms several state-of-the-art LOS guidance schemes utilizing time-varying lookahead distances.\",\"PeriodicalId\":13191,\"journal\":{\"name\":\"IEEE Journal of Oceanic Engineering\",\"volume\":\"50 3\",\"pages\":\"1637-1646\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Oceanic Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10904462/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Oceanic Engineering","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10904462/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种利用神经网络参数化前瞻距离的视距制导方法。我们证明了所提出的导引律给出了一个包含原点一致全局渐近稳定(UGAS)的紧集。重要的是,当横向速度为零时,所提出的制导律使闭环系统的原点为UGAS。通过使用神经网络参数化前瞻距离,学习过程产生给定性能指标的局部最优前瞻距离,并允许基于任意输入的前瞻距离的非线性变化。我们演示了所提出的方法如何优于使用时变前瞻距离的几种最先进的LOS制导方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Line-of-Sight Guidance: Learning to Look Ahead
This article introduces a novel line-of-sight (LOS) guidance approach utilizing a neural network to parameterize the lookahead distance. We prove that the proposed guidance law renders a compact set containing the origin uniformly globally asymptotically stable (UGAS) for the closed-loop system. Importantly, if the sideways velocity is zero, the proposed guidance law renders the origin of the closed-loop system UGAS. By employing a neural network to parameterize the lookahead distance, the learning process results in a locally optimal lookahead distance for a given performance metric, and allows for nonlinear variation of the lookahead distance based on arbitrary input. We demonstrate how the proposed approach outperforms several state-of-the-art LOS guidance schemes utilizing time-varying lookahead distances.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Journal of Oceanic Engineering
IEEE Journal of Oceanic Engineering 工程技术-工程:大洋
CiteScore
9.60
自引率
12.20%
发文量
86
审稿时长
12 months
期刊介绍: The IEEE Journal of Oceanic Engineering (ISSN 0364-9059) is the online-only quarterly publication of the IEEE Oceanic Engineering Society (IEEE OES). The scope of the Journal is the field of interest of the IEEE OES, which encompasses all aspects of science, engineering, and technology that address research, development, and operations pertaining to all bodies of water. This includes the creation of new capabilities and technologies from concept design through prototypes, testing, and operational systems to sense, explore, understand, develop, use, and responsibly manage natural resources.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信