Yajing Gu;Yonggang Lin;Danyang Li;Xinliang Lu;Hongwei Liu;Yong Sun
{"title":"一种用于摆波能量转换器的集成活塞-可变数字控制液压缸","authors":"Yajing Gu;Yonggang Lin;Danyang Li;Xinliang Lu;Hongwei Liu;Yong Sun","doi":"10.1109/JOE.2025.3531959","DOIUrl":null,"url":null,"abstract":"A pendulum wave energy converter (WEC) is one of the most important forms of wave energy harvesting devices. To obtain better performance under broader wave conditions, this article proposes an integrated piston-variable digital-controlled hydraulic cylinder (IPDC). A traditionally used single large cylinder is replaced by several pairs of subsidiary cylinders to compose a more compact and extendable integrated type. The working area of the IPDC can be regulated in real time using high-speed <sc>on–off</small> valves to change power take-off (PTO) damping and achieve maximum energy extraction in the pendulum WEC. In performance experiments, the average mechanical efficiency is around 95% for all area combinations, and the leakage is relatively lower. The results indicate that the IPDC has a lower extra energy loss compared with a conventional single hydraulic cylinder. Based on the theoretical analysis for maximum power extraction, AMESim–Simulink co-simulation and prototype experiments are conducted to verify the feasibility and effectiveness of the IPDC. The IPDC can significantly improve the total captured energy by 37.04% compared with the fixed area cylinder in the experiment. The results illustrate that the IPDC exhibits excellent harvesting performance by effectively changing the connected area to impose compatible PTO resistance under broader wave conditions.","PeriodicalId":13191,"journal":{"name":"IEEE Journal of Oceanic Engineering","volume":"50 3","pages":"2135-2145"},"PeriodicalIF":5.3000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Integrated Piston-Variable Digital-Controlled Hydraulic Cylinder for Pendulum Wave Energy Converter\",\"authors\":\"Yajing Gu;Yonggang Lin;Danyang Li;Xinliang Lu;Hongwei Liu;Yong Sun\",\"doi\":\"10.1109/JOE.2025.3531959\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A pendulum wave energy converter (WEC) is one of the most important forms of wave energy harvesting devices. To obtain better performance under broader wave conditions, this article proposes an integrated piston-variable digital-controlled hydraulic cylinder (IPDC). A traditionally used single large cylinder is replaced by several pairs of subsidiary cylinders to compose a more compact and extendable integrated type. The working area of the IPDC can be regulated in real time using high-speed <sc>on–off</small> valves to change power take-off (PTO) damping and achieve maximum energy extraction in the pendulum WEC. In performance experiments, the average mechanical efficiency is around 95% for all area combinations, and the leakage is relatively lower. The results indicate that the IPDC has a lower extra energy loss compared with a conventional single hydraulic cylinder. Based on the theoretical analysis for maximum power extraction, AMESim–Simulink co-simulation and prototype experiments are conducted to verify the feasibility and effectiveness of the IPDC. The IPDC can significantly improve the total captured energy by 37.04% compared with the fixed area cylinder in the experiment. The results illustrate that the IPDC exhibits excellent harvesting performance by effectively changing the connected area to impose compatible PTO resistance under broader wave conditions.\",\"PeriodicalId\":13191,\"journal\":{\"name\":\"IEEE Journal of Oceanic Engineering\",\"volume\":\"50 3\",\"pages\":\"2135-2145\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Oceanic Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10945932/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Oceanic Engineering","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10945932/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
An Integrated Piston-Variable Digital-Controlled Hydraulic Cylinder for Pendulum Wave Energy Converter
A pendulum wave energy converter (WEC) is one of the most important forms of wave energy harvesting devices. To obtain better performance under broader wave conditions, this article proposes an integrated piston-variable digital-controlled hydraulic cylinder (IPDC). A traditionally used single large cylinder is replaced by several pairs of subsidiary cylinders to compose a more compact and extendable integrated type. The working area of the IPDC can be regulated in real time using high-speed on–off valves to change power take-off (PTO) damping and achieve maximum energy extraction in the pendulum WEC. In performance experiments, the average mechanical efficiency is around 95% for all area combinations, and the leakage is relatively lower. The results indicate that the IPDC has a lower extra energy loss compared with a conventional single hydraulic cylinder. Based on the theoretical analysis for maximum power extraction, AMESim–Simulink co-simulation and prototype experiments are conducted to verify the feasibility and effectiveness of the IPDC. The IPDC can significantly improve the total captured energy by 37.04% compared with the fixed area cylinder in the experiment. The results illustrate that the IPDC exhibits excellent harvesting performance by effectively changing the connected area to impose compatible PTO resistance under broader wave conditions.
期刊介绍:
The IEEE Journal of Oceanic Engineering (ISSN 0364-9059) is the online-only quarterly publication of the IEEE Oceanic Engineering Society (IEEE OES). The scope of the Journal is the field of interest of the IEEE OES, which encompasses all aspects of science, engineering, and technology that address research, development, and operations pertaining to all bodies of water. This includes the creation of new capabilities and technologies from concept design through prototypes, testing, and operational systems to sense, explore, understand, develop, use, and responsibly manage natural resources.