{"title":"一种自主水下滑翔机,具有改进的机载导航,用于无人值守的测绘","authors":"Amy Phung;Gideon Billings;Gregory Burgess;Richard Camilli","doi":"10.1109/JOE.2025.3538925","DOIUrl":null,"url":null,"abstract":"Georeferenced subsurface survey is primarily conducted by autonomous underwater vehicles and remotely operated vehicles that require power-intensive navigation suites, acoustic beacons, and surface support vessels with attendant operations teams onboard. The significant infrastructure required to operate vehicles conducting surveys in remote regions (e.g., under ice) poses increased challenges and remains prohibitively costly, leading to sparse coverage. Unattended operations using autonomous underwater gliders (AUGs) with low power, high-resolution onboard navigation holds promise in scaling up coverage while significantly reducing the operational costs of georeferenced surveys. In this article, we present a modified AUG equipped with a low power embedded navigation process and results of unattended sonar acoustic surveys using this experimental platform.","PeriodicalId":13191,"journal":{"name":"IEEE Journal of Oceanic Engineering","volume":"50 3","pages":"1626-1636"},"PeriodicalIF":5.3000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10980064","citationCount":"0","resultStr":"{\"title\":\"An Autonomous Underwater Glider With Improved Onboard Navigation for Unattended Mapping\",\"authors\":\"Amy Phung;Gideon Billings;Gregory Burgess;Richard Camilli\",\"doi\":\"10.1109/JOE.2025.3538925\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Georeferenced subsurface survey is primarily conducted by autonomous underwater vehicles and remotely operated vehicles that require power-intensive navigation suites, acoustic beacons, and surface support vessels with attendant operations teams onboard. The significant infrastructure required to operate vehicles conducting surveys in remote regions (e.g., under ice) poses increased challenges and remains prohibitively costly, leading to sparse coverage. Unattended operations using autonomous underwater gliders (AUGs) with low power, high-resolution onboard navigation holds promise in scaling up coverage while significantly reducing the operational costs of georeferenced surveys. In this article, we present a modified AUG equipped with a low power embedded navigation process and results of unattended sonar acoustic surveys using this experimental platform.\",\"PeriodicalId\":13191,\"journal\":{\"name\":\"IEEE Journal of Oceanic Engineering\",\"volume\":\"50 3\",\"pages\":\"1626-1636\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10980064\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Oceanic Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10980064/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Oceanic Engineering","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10980064/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
An Autonomous Underwater Glider With Improved Onboard Navigation for Unattended Mapping
Georeferenced subsurface survey is primarily conducted by autonomous underwater vehicles and remotely operated vehicles that require power-intensive navigation suites, acoustic beacons, and surface support vessels with attendant operations teams onboard. The significant infrastructure required to operate vehicles conducting surveys in remote regions (e.g., under ice) poses increased challenges and remains prohibitively costly, leading to sparse coverage. Unattended operations using autonomous underwater gliders (AUGs) with low power, high-resolution onboard navigation holds promise in scaling up coverage while significantly reducing the operational costs of georeferenced surveys. In this article, we present a modified AUG equipped with a low power embedded navigation process and results of unattended sonar acoustic surveys using this experimental platform.
期刊介绍:
The IEEE Journal of Oceanic Engineering (ISSN 0364-9059) is the online-only quarterly publication of the IEEE Oceanic Engineering Society (IEEE OES). The scope of the Journal is the field of interest of the IEEE OES, which encompasses all aspects of science, engineering, and technology that address research, development, and operations pertaining to all bodies of water. This includes the creation of new capabilities and technologies from concept design through prototypes, testing, and operational systems to sense, explore, understand, develop, use, and responsibly manage natural resources.