Martin Aubard;Ana Madureira;Luís Teixeira;José Pinto
{"title":"水下机器人中基于声纳的深度学习:概述,鲁棒性和挑战","authors":"Martin Aubard;Ana Madureira;Luís Teixeira;José Pinto","doi":"10.1109/JOE.2025.3531933","DOIUrl":null,"url":null,"abstract":"With the growing interest in underwater exploration and monitoring, autonomous underwater vehicles have become essential. The recent interest in onboard deep learning (DL) has advanced real-time environmental interaction capabilities relying on efficient and accurate vision-based DL models. However, the predominant use of sonar in underwater environments, characterized by limited training data and inherent noise, poses challenges to model robustness. This autonomy improvement raises safety concerns for deploying such models during underwater operations, potentially leading to hazardous situations. This article aims to provide the first comprehensive overview of sonar-based DL under the scope of robustness. It studies sonar-based DL perception task models, such as classification, object detection, segmentation, and simultaneous localization and mapping. Furthermore, this article systematizes sonar-based state-of-the-art data sets, simulators, and robustness methods, such as neural network verification, out-of-distribution, and adversarial attacks. This article highlights the lack of robustness in sonar-based DL research and suggests future research pathways, notably establishing a baseline sonar-based data set and bridging the simulation-to-reality gap.","PeriodicalId":13191,"journal":{"name":"IEEE Journal of Oceanic Engineering","volume":"50 3","pages":"1866-1884"},"PeriodicalIF":5.3000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10947005","citationCount":"0","resultStr":"{\"title\":\"Sonar-Based Deep Learning in Underwater Robotics: Overview, Robustness, and Challenges\",\"authors\":\"Martin Aubard;Ana Madureira;Luís Teixeira;José Pinto\",\"doi\":\"10.1109/JOE.2025.3531933\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the growing interest in underwater exploration and monitoring, autonomous underwater vehicles have become essential. The recent interest in onboard deep learning (DL) has advanced real-time environmental interaction capabilities relying on efficient and accurate vision-based DL models. However, the predominant use of sonar in underwater environments, characterized by limited training data and inherent noise, poses challenges to model robustness. This autonomy improvement raises safety concerns for deploying such models during underwater operations, potentially leading to hazardous situations. This article aims to provide the first comprehensive overview of sonar-based DL under the scope of robustness. It studies sonar-based DL perception task models, such as classification, object detection, segmentation, and simultaneous localization and mapping. Furthermore, this article systematizes sonar-based state-of-the-art data sets, simulators, and robustness methods, such as neural network verification, out-of-distribution, and adversarial attacks. This article highlights the lack of robustness in sonar-based DL research and suggests future research pathways, notably establishing a baseline sonar-based data set and bridging the simulation-to-reality gap.\",\"PeriodicalId\":13191,\"journal\":{\"name\":\"IEEE Journal of Oceanic Engineering\",\"volume\":\"50 3\",\"pages\":\"1866-1884\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10947005\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Oceanic Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10947005/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Oceanic Engineering","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10947005/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Sonar-Based Deep Learning in Underwater Robotics: Overview, Robustness, and Challenges
With the growing interest in underwater exploration and monitoring, autonomous underwater vehicles have become essential. The recent interest in onboard deep learning (DL) has advanced real-time environmental interaction capabilities relying on efficient and accurate vision-based DL models. However, the predominant use of sonar in underwater environments, characterized by limited training data and inherent noise, poses challenges to model robustness. This autonomy improvement raises safety concerns for deploying such models during underwater operations, potentially leading to hazardous situations. This article aims to provide the first comprehensive overview of sonar-based DL under the scope of robustness. It studies sonar-based DL perception task models, such as classification, object detection, segmentation, and simultaneous localization and mapping. Furthermore, this article systematizes sonar-based state-of-the-art data sets, simulators, and robustness methods, such as neural network verification, out-of-distribution, and adversarial attacks. This article highlights the lack of robustness in sonar-based DL research and suggests future research pathways, notably establishing a baseline sonar-based data set and bridging the simulation-to-reality gap.
期刊介绍:
The IEEE Journal of Oceanic Engineering (ISSN 0364-9059) is the online-only quarterly publication of the IEEE Oceanic Engineering Society (IEEE OES). The scope of the Journal is the field of interest of the IEEE OES, which encompasses all aspects of science, engineering, and technology that address research, development, and operations pertaining to all bodies of water. This includes the creation of new capabilities and technologies from concept design through prototypes, testing, and operational systems to sense, explore, understand, develop, use, and responsibly manage natural resources.