Joanna Rzempołuch;Kevin Goddard;Sunny Chaudhary;George Callender;Robert G. Olsen;Justin Dix;Paul Lewin;David Renew
{"title":"高压直流海底电缆附近水运动诱发的电场","authors":"Joanna Rzempołuch;Kevin Goddard;Sunny Chaudhary;George Callender;Robert G. Olsen;Justin Dix;Paul Lewin;David Renew","doi":"10.1109/JOE.2025.3556152","DOIUrl":null,"url":null,"abstract":"With the raised investment in interconnectors and offshore wind farms located further from the shore, there has been an increased need for the licensing and environmental assessment of high voltage direct current (HVDC) submarine cables. The motionally induced electric fields due to HVDC submarine cables have not been previously modeled in the literature. In this article, a methodology for modeling this phenomenon is outlined. Factors, such as geographical location of the cable system, electrical conductivities of the media, reference frames, and water velocity profile, are included in the analysis. The results are compared with an approximation adopted in other publications. The resulting electric fields and their spatial distributions are presented and discussed for different cable systems, cable orientations and reference frames. The dependency of the local electric fields on the geographical location is shown. The investigation demonstrates the sensitivity of electric fields to variations in seabed and water conductivities. Specifically, the most extreme combination yielded an 85<inline-formula><tex-math>$\\%$</tex-math></inline-formula> increase compared to the case with equal conductivities, which emphasises the substantial impact of media conductivities on local electric field prediction. The methodology outlined in this paper can provide a basis for future empirical validation, and inform biological experiments and licensing processes.","PeriodicalId":13191,"journal":{"name":"IEEE Journal of Oceanic Engineering","volume":"50 3","pages":"2369-2380"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electric Fields Induced by Water Movement in Proximity to HVDC Submarine Cables\",\"authors\":\"Joanna Rzempołuch;Kevin Goddard;Sunny Chaudhary;George Callender;Robert G. Olsen;Justin Dix;Paul Lewin;David Renew\",\"doi\":\"10.1109/JOE.2025.3556152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the raised investment in interconnectors and offshore wind farms located further from the shore, there has been an increased need for the licensing and environmental assessment of high voltage direct current (HVDC) submarine cables. The motionally induced electric fields due to HVDC submarine cables have not been previously modeled in the literature. In this article, a methodology for modeling this phenomenon is outlined. Factors, such as geographical location of the cable system, electrical conductivities of the media, reference frames, and water velocity profile, are included in the analysis. The results are compared with an approximation adopted in other publications. The resulting electric fields and their spatial distributions are presented and discussed for different cable systems, cable orientations and reference frames. The dependency of the local electric fields on the geographical location is shown. The investigation demonstrates the sensitivity of electric fields to variations in seabed and water conductivities. Specifically, the most extreme combination yielded an 85<inline-formula><tex-math>$\\\\%$</tex-math></inline-formula> increase compared to the case with equal conductivities, which emphasises the substantial impact of media conductivities on local electric field prediction. The methodology outlined in this paper can provide a basis for future empirical validation, and inform biological experiments and licensing processes.\",\"PeriodicalId\":13191,\"journal\":{\"name\":\"IEEE Journal of Oceanic Engineering\",\"volume\":\"50 3\",\"pages\":\"2369-2380\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Oceanic Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10994698/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Oceanic Engineering","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10994698/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Electric Fields Induced by Water Movement in Proximity to HVDC Submarine Cables
With the raised investment in interconnectors and offshore wind farms located further from the shore, there has been an increased need for the licensing and environmental assessment of high voltage direct current (HVDC) submarine cables. The motionally induced electric fields due to HVDC submarine cables have not been previously modeled in the literature. In this article, a methodology for modeling this phenomenon is outlined. Factors, such as geographical location of the cable system, electrical conductivities of the media, reference frames, and water velocity profile, are included in the analysis. The results are compared with an approximation adopted in other publications. The resulting electric fields and their spatial distributions are presented and discussed for different cable systems, cable orientations and reference frames. The dependency of the local electric fields on the geographical location is shown. The investigation demonstrates the sensitivity of electric fields to variations in seabed and water conductivities. Specifically, the most extreme combination yielded an 85$\%$ increase compared to the case with equal conductivities, which emphasises the substantial impact of media conductivities on local electric field prediction. The methodology outlined in this paper can provide a basis for future empirical validation, and inform biological experiments and licensing processes.
期刊介绍:
The IEEE Journal of Oceanic Engineering (ISSN 0364-9059) is the online-only quarterly publication of the IEEE Oceanic Engineering Society (IEEE OES). The scope of the Journal is the field of interest of the IEEE OES, which encompasses all aspects of science, engineering, and technology that address research, development, and operations pertaining to all bodies of water. This includes the creation of new capabilities and technologies from concept design through prototypes, testing, and operational systems to sense, explore, understand, develop, use, and responsibly manage natural resources.