转醛醇酶合成8碳和9碳糖的研究。

IF 6.2 1区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY
Akihide Yoshihara*, Erika Miyoshi, Shunsuke Tomino, Yusuke Hanaki, Susumu Mochizuki, Hiromi Yoshida, Ken Izumori and Shigehiro Kamitori*, 
{"title":"转醛醇酶合成8碳和9碳糖的研究。","authors":"Akihide Yoshihara*,&nbsp;Erika Miyoshi,&nbsp;Shunsuke Tomino,&nbsp;Yusuke Hanaki,&nbsp;Susumu Mochizuki,&nbsp;Hiromi Yoshida,&nbsp;Ken Izumori and Shigehiro Kamitori*,&nbsp;","doi":"10.1021/acs.jafc.5c05539","DOIUrl":null,"url":null,"abstract":"<p >In nature, higher carbon sugars composed of 7 or more carbons exist in limited quantities. Since some higher carbon sugars have attracted attention due to their biological activities, it is necessary to develop a strategy to synthesize them. Transaldolase catalyzes the transfer of three-carbon units from <span>d</span>-fructose-6-phosphate (donor) to <span>d</span>-erythrulose-4-phosphate (acceptor) to produce <span>d</span>-sedoheptulose-7-phosphate. If transaldolase can recognize nonphosphorylated monosaccharides as substrates, it can synthesize 8-carbon octuloses and 9-carbon nonuloses using nonphosphorylated pentoses and hexoses as acceptors, respectively. We performed biochemical and structural characterization of thermophilic <i>Thermus thermophilus</i> HB8 transaldolase and successfully synthesized octuloses and nonuloses using nonphosphorylated aldoses as acceptors: <span>d</span>-ribose (conversion rate of 74%), <span>d</span>-xylose (55%), <span>l</span>-arabinose (49%), <span>l</span>-lyxose (84%), <span>d</span>-allose (13%), <span>d</span>-galactose (56%), and <span>l</span>-altrose (71%). Products were identified by LC/MS and NMR spectroscopic analyses. X-ray structure of the enzyme showed that the wide and hydrophilic catalytic site facilitates the binding of nonphosphorylated aldoses as acceptors.</p>","PeriodicalId":41,"journal":{"name":"Journal of Agricultural and Food Chemistry","volume":"73 30","pages":"18914–18922"},"PeriodicalIF":6.2000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthetic Study of 8- and 9-Carbon Sugars by Transaldolase\",\"authors\":\"Akihide Yoshihara*,&nbsp;Erika Miyoshi,&nbsp;Shunsuke Tomino,&nbsp;Yusuke Hanaki,&nbsp;Susumu Mochizuki,&nbsp;Hiromi Yoshida,&nbsp;Ken Izumori and Shigehiro Kamitori*,&nbsp;\",\"doi\":\"10.1021/acs.jafc.5c05539\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >In nature, higher carbon sugars composed of 7 or more carbons exist in limited quantities. Since some higher carbon sugars have attracted attention due to their biological activities, it is necessary to develop a strategy to synthesize them. Transaldolase catalyzes the transfer of three-carbon units from <span>d</span>-fructose-6-phosphate (donor) to <span>d</span>-erythrulose-4-phosphate (acceptor) to produce <span>d</span>-sedoheptulose-7-phosphate. If transaldolase can recognize nonphosphorylated monosaccharides as substrates, it can synthesize 8-carbon octuloses and 9-carbon nonuloses using nonphosphorylated pentoses and hexoses as acceptors, respectively. We performed biochemical and structural characterization of thermophilic <i>Thermus thermophilus</i> HB8 transaldolase and successfully synthesized octuloses and nonuloses using nonphosphorylated aldoses as acceptors: <span>d</span>-ribose (conversion rate of 74%), <span>d</span>-xylose (55%), <span>l</span>-arabinose (49%), <span>l</span>-lyxose (84%), <span>d</span>-allose (13%), <span>d</span>-galactose (56%), and <span>l</span>-altrose (71%). Products were identified by LC/MS and NMR spectroscopic analyses. X-ray structure of the enzyme showed that the wide and hydrophilic catalytic site facilitates the binding of nonphosphorylated aldoses as acceptors.</p>\",\"PeriodicalId\":41,\"journal\":{\"name\":\"Journal of Agricultural and Food Chemistry\",\"volume\":\"73 30\",\"pages\":\"18914–18922\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Agricultural and Food Chemistry\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jafc.5c05539\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural and Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jafc.5c05539","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在自然界中,由7个或更多碳组成的高碳糖数量有限。一些高碳糖因其生物活性而受到人们的关注,因此有必要研究合成高碳糖的方法。转醛缩酶催化三碳单元从d-果糖-6-磷酸(供体)转移到d-赤藓糖-4-磷酸(受体),生成d-糖庚糖-7-磷酸。如果转醛缩酶能够识别非磷酸化的单糖作为底物,那么它可以分别以非磷酸化的戊糖和己糖为受体合成8碳辛糖和9碳非糖。我们对嗜热性Thermus thermophilus HB8转醛糖酶进行了生化和结构表征,并使用非磷酸化醛糖作为受体成功合成了辛糖糖和非醛糖糖:d-核糖(转化率为74%)、d-木糖(55%)、l-阿拉伯糖(49%)、l-葡萄糖(84%)、d-醛糖(13%)、d-半乳糖(56%)和l-醛糖(71%)。产物经LC/MS和NMR鉴定。该酶的x射线结构表明,宽且亲水的催化位点有利于非磷酸化醛糖作为受体的结合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Synthetic Study of 8- and 9-Carbon Sugars by Transaldolase

Synthetic Study of 8- and 9-Carbon Sugars by Transaldolase

In nature, higher carbon sugars composed of 7 or more carbons exist in limited quantities. Since some higher carbon sugars have attracted attention due to their biological activities, it is necessary to develop a strategy to synthesize them. Transaldolase catalyzes the transfer of three-carbon units from d-fructose-6-phosphate (donor) to d-erythrulose-4-phosphate (acceptor) to produce d-sedoheptulose-7-phosphate. If transaldolase can recognize nonphosphorylated monosaccharides as substrates, it can synthesize 8-carbon octuloses and 9-carbon nonuloses using nonphosphorylated pentoses and hexoses as acceptors, respectively. We performed biochemical and structural characterization of thermophilic Thermus thermophilus HB8 transaldolase and successfully synthesized octuloses and nonuloses using nonphosphorylated aldoses as acceptors: d-ribose (conversion rate of 74%), d-xylose (55%), l-arabinose (49%), l-lyxose (84%), d-allose (13%), d-galactose (56%), and l-altrose (71%). Products were identified by LC/MS and NMR spectroscopic analyses. X-ray structure of the enzyme showed that the wide and hydrophilic catalytic site facilitates the binding of nonphosphorylated aldoses as acceptors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Agricultural and Food Chemistry
Journal of Agricultural and Food Chemistry 农林科学-农业综合
CiteScore
9.90
自引率
8.20%
发文量
1375
审稿时长
2.3 months
期刊介绍: The Journal of Agricultural and Food Chemistry publishes high-quality, cutting edge original research representing complete studies and research advances dealing with the chemistry and biochemistry of agriculture and food. The Journal also encourages papers with chemistry and/or biochemistry as a major component combined with biological/sensory/nutritional/toxicological evaluation related to agriculture and/or food.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信