基于活性位点重新设计的肌醇-1-磷酸合成酶的蛋白质工程促进了淀粉在体外合成酶生物系统中生物制造肌醇。

IF 6.2 1区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY
Lin Fan, Hao Su, Shangshang Sun, Meng Zhang, Peter Ruhdal Jensen, Xiang Sheng* and Chun You*, 
{"title":"基于活性位点重新设计的肌醇-1-磷酸合成酶的蛋白质工程促进了淀粉在体外合成酶生物系统中生物制造肌醇。","authors":"Lin Fan,&nbsp;Hao Su,&nbsp;Shangshang Sun,&nbsp;Meng Zhang,&nbsp;Peter Ruhdal Jensen,&nbsp;Xiang Sheng* and Chun You*,&nbsp;","doi":"10.1021/acs.jafc.5c03371","DOIUrl":null,"url":null,"abstract":"<p ><i>myo</i>-Inositol, a water-soluble B vitamin compound, has broad applications in the food, pharmaceutical, and feed industries. Sustainable production of <i>myo</i>-inositol from starch can be achieved using an <i>in vitro</i> synthetic enzymatic biosystem (ivSEB) comprising four key enzymes. The NAD<sup>+</sup>/NADH self-recycling hyperthermophilic inositol 1-phosphate synthase (AfIPS) from <i>Archaeoglobus fulgidus</i> catalyzes the rate-limiting reaction. Utilizing a combinatorial active-site saturation test and iterative saturation mutagenesis (CAST/ISM), an optimized AfIPS mutant (I11C/I334V) was obtained. This mutant retained thermal stability comparable to the wild-type enzyme and exhibited a 2-fold increase in the specific activity (1.80 to 3.83 U/mg at 70 °C), and a 3-fold improvement in catalytic efficiency (<i>k</i><sub>cat</sub>/<i>K</i><sub>m</sub>: 7.46 to 22.1 mM<sup>–1</sup> min<sup>–1</sup>). Molecular dynamics (MD) simulations revealed a novel hydrogen bond between the C11 side chain and the NAD<sup>+</sup> pyrophosphate, enhancing cofactor binding and stabilizing the active conformation. This stabilization promotes optimal substrate alignment and improved hydride transfer, reducing total enzyme loading in the ivSEB by approximately 40% at varying substrate levels. These findings highlight the potential of semirational engineering of rate-limiting enzymes to enhance process efficiency and reduce costs, thus advancing the feasibility of scalable and economically sustainable <i>myo</i>-inositol production.</p>","PeriodicalId":41,"journal":{"name":"Journal of Agricultural and Food Chemistry","volume":"73 30","pages":"18853–18863"},"PeriodicalIF":6.2000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Protein Engineering of an Inositol-1-phosphate Synthase Based on the Active-Site Redesign Facilitates the Biomanufacturing of myo-Inositol from Starch via In Vitro Synthetic Enzymatic Biosystem\",\"authors\":\"Lin Fan,&nbsp;Hao Su,&nbsp;Shangshang Sun,&nbsp;Meng Zhang,&nbsp;Peter Ruhdal Jensen,&nbsp;Xiang Sheng* and Chun You*,&nbsp;\",\"doi\":\"10.1021/acs.jafc.5c03371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p ><i>myo</i>-Inositol, a water-soluble B vitamin compound, has broad applications in the food, pharmaceutical, and feed industries. Sustainable production of <i>myo</i>-inositol from starch can be achieved using an <i>in vitro</i> synthetic enzymatic biosystem (ivSEB) comprising four key enzymes. The NAD<sup>+</sup>/NADH self-recycling hyperthermophilic inositol 1-phosphate synthase (AfIPS) from <i>Archaeoglobus fulgidus</i> catalyzes the rate-limiting reaction. Utilizing a combinatorial active-site saturation test and iterative saturation mutagenesis (CAST/ISM), an optimized AfIPS mutant (I11C/I334V) was obtained. This mutant retained thermal stability comparable to the wild-type enzyme and exhibited a 2-fold increase in the specific activity (1.80 to 3.83 U/mg at 70 °C), and a 3-fold improvement in catalytic efficiency (<i>k</i><sub>cat</sub>/<i>K</i><sub>m</sub>: 7.46 to 22.1 mM<sup>–1</sup> min<sup>–1</sup>). Molecular dynamics (MD) simulations revealed a novel hydrogen bond between the C11 side chain and the NAD<sup>+</sup> pyrophosphate, enhancing cofactor binding and stabilizing the active conformation. This stabilization promotes optimal substrate alignment and improved hydride transfer, reducing total enzyme loading in the ivSEB by approximately 40% at varying substrate levels. These findings highlight the potential of semirational engineering of rate-limiting enzymes to enhance process efficiency and reduce costs, thus advancing the feasibility of scalable and economically sustainable <i>myo</i>-inositol production.</p>\",\"PeriodicalId\":41,\"journal\":{\"name\":\"Journal of Agricultural and Food Chemistry\",\"volume\":\"73 30\",\"pages\":\"18853–18863\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Agricultural and Food Chemistry\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jafc.5c03371\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural and Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jafc.5c03371","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

肌醇是一种水溶性维生素B族化合物,在食品、制药和饲料工业中有着广泛的应用。利用由四种关键酶组成的体外合成酶生物系统(ivSEB),可以实现淀粉可持续生产肌醇。富氏古舌菌的NAD+/NADH自循环超嗜热肌醇1-磷酸合成酶(AfIPS)催化限速反应。利用组合活性位点饱和试验和迭代饱和诱变(CAST/ISM),获得了优化的AfIPS突变体(I11C/I334V)。该突变体保持了与野生型酶相当的热稳定性,比活性增加了2倍(70°C时为1.80至3.83 U/mg),催化效率提高了3倍(kcat/Km: 7.46至22.1 mM-1 min-1)。分子动力学(MD)模拟表明,C11侧链与NAD+焦磷酸之间存在一个新的氢键,增强了辅因子结合并稳定了活性构象。这种稳定性促进了最佳底物排列和改善氢化物转移,在不同底物水平下,将ivSEB中的总酶负荷降低了约40%。这些发现突出了限速酶半工程在提高工艺效率和降低成本方面的潜力,从而提高了可扩展和经济上可持续的肌醇生产的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Protein Engineering of an Inositol-1-phosphate Synthase Based on the Active-Site Redesign Facilitates the Biomanufacturing of myo-Inositol from Starch via In Vitro Synthetic Enzymatic Biosystem

Protein Engineering of an Inositol-1-phosphate Synthase Based on the Active-Site Redesign Facilitates the Biomanufacturing of myo-Inositol from Starch via In Vitro Synthetic Enzymatic Biosystem

myo-Inositol, a water-soluble B vitamin compound, has broad applications in the food, pharmaceutical, and feed industries. Sustainable production of myo-inositol from starch can be achieved using an in vitro synthetic enzymatic biosystem (ivSEB) comprising four key enzymes. The NAD+/NADH self-recycling hyperthermophilic inositol 1-phosphate synthase (AfIPS) from Archaeoglobus fulgidus catalyzes the rate-limiting reaction. Utilizing a combinatorial active-site saturation test and iterative saturation mutagenesis (CAST/ISM), an optimized AfIPS mutant (I11C/I334V) was obtained. This mutant retained thermal stability comparable to the wild-type enzyme and exhibited a 2-fold increase in the specific activity (1.80 to 3.83 U/mg at 70 °C), and a 3-fold improvement in catalytic efficiency (kcat/Km: 7.46 to 22.1 mM–1 min–1). Molecular dynamics (MD) simulations revealed a novel hydrogen bond between the C11 side chain and the NAD+ pyrophosphate, enhancing cofactor binding and stabilizing the active conformation. This stabilization promotes optimal substrate alignment and improved hydride transfer, reducing total enzyme loading in the ivSEB by approximately 40% at varying substrate levels. These findings highlight the potential of semirational engineering of rate-limiting enzymes to enhance process efficiency and reduce costs, thus advancing the feasibility of scalable and economically sustainable myo-inositol production.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Agricultural and Food Chemistry
Journal of Agricultural and Food Chemistry 农林科学-农业综合
CiteScore
9.90
自引率
8.20%
发文量
1375
审稿时长
2.3 months
期刊介绍: The Journal of Agricultural and Food Chemistry publishes high-quality, cutting edge original research representing complete studies and research advances dealing with the chemistry and biochemistry of agriculture and food. The Journal also encourages papers with chemistry and/or biochemistry as a major component combined with biological/sensory/nutritional/toxicological evaluation related to agriculture and/or food.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信