基于隐马尔可夫模型间歇控制的异步Leader-Follower马尔可夫神经网络的反准同步。

IF 9.4 1区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Zijing Xiao,Meng Zhang,Hongxia Rao,Chang Liu,Yong Xu
{"title":"基于隐马尔可夫模型间歇控制的异步Leader-Follower马尔可夫神经网络的反准同步。","authors":"Zijing Xiao,Meng Zhang,Hongxia Rao,Chang Liu,Yong Xu","doi":"10.1109/tcyb.2025.3582043","DOIUrl":null,"url":null,"abstract":"This study focuses on anti-quasisynchronization for discrete-time asynchronous leader-follower Markovian neural networks (MNNs) with mismatched parameters. To overcome the energy constraint, the intermittent control transmission strategy is introduced. Meanwhile, to address the challenge of unknown Markovian models in the leader-follower MNNs, a hidden Markov model (HMM) is utilized to infer unknown modes from observable information. Then, an intermittent nonfragile controller based on HMM is designed for the follower MNNs. Furthermore, the exponential iteration method is employed to establish sufficient conditions for ensuring anti-quasisynchronization for leader-follower MNNs, and an optimal boundary of anti-quasisynchronization is obtained. Ultimately, the effectiveness of the proposed HMM-based intermittent controller is demonstrated via a numerical simulation.","PeriodicalId":13112,"journal":{"name":"IEEE Transactions on Cybernetics","volume":"37 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anti-Quasisynchronization for Asynchronous Leader-Follower Markovian Neural Networks With Hidden Markov Model-Based Intermittent Control.\",\"authors\":\"Zijing Xiao,Meng Zhang,Hongxia Rao,Chang Liu,Yong Xu\",\"doi\":\"10.1109/tcyb.2025.3582043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study focuses on anti-quasisynchronization for discrete-time asynchronous leader-follower Markovian neural networks (MNNs) with mismatched parameters. To overcome the energy constraint, the intermittent control transmission strategy is introduced. Meanwhile, to address the challenge of unknown Markovian models in the leader-follower MNNs, a hidden Markov model (HMM) is utilized to infer unknown modes from observable information. Then, an intermittent nonfragile controller based on HMM is designed for the follower MNNs. Furthermore, the exponential iteration method is employed to establish sufficient conditions for ensuring anti-quasisynchronization for leader-follower MNNs, and an optimal boundary of anti-quasisynchronization is obtained. Ultimately, the effectiveness of the proposed HMM-based intermittent controller is demonstrated via a numerical simulation.\",\"PeriodicalId\":13112,\"journal\":{\"name\":\"IEEE Transactions on Cybernetics\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Cybernetics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/tcyb.2025.3582043\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cybernetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/tcyb.2025.3582043","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

研究了参数不匹配的离散时间异步leader-follower马尔可夫神经网络的反准同步问题。为了克服能量约束,引入了间歇控制传输策略。同时,为了解决leader-follower MNNs中未知马尔可夫模型的挑战,利用隐马尔可夫模型(HMM)从可观测信息中推断未知模式。然后,针对随动mnn设计了基于HMM的间歇非脆弱控制器。利用指数迭代法建立了leader-follower MNNs抗准同步的充分条件,得到了抗准同步的最优边界。最后,通过数值仿真验证了所提出的基于hmm的间歇控制器的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Anti-Quasisynchronization for Asynchronous Leader-Follower Markovian Neural Networks With Hidden Markov Model-Based Intermittent Control.
This study focuses on anti-quasisynchronization for discrete-time asynchronous leader-follower Markovian neural networks (MNNs) with mismatched parameters. To overcome the energy constraint, the intermittent control transmission strategy is introduced. Meanwhile, to address the challenge of unknown Markovian models in the leader-follower MNNs, a hidden Markov model (HMM) is utilized to infer unknown modes from observable information. Then, an intermittent nonfragile controller based on HMM is designed for the follower MNNs. Furthermore, the exponential iteration method is employed to establish sufficient conditions for ensuring anti-quasisynchronization for leader-follower MNNs, and an optimal boundary of anti-quasisynchronization is obtained. Ultimately, the effectiveness of the proposed HMM-based intermittent controller is demonstrated via a numerical simulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Cybernetics
IEEE Transactions on Cybernetics COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, CYBERNETICS
CiteScore
25.40
自引率
11.00%
发文量
1869
期刊介绍: The scope of the IEEE Transactions on Cybernetics includes computational approaches to the field of cybernetics. Specifically, the transactions welcomes papers on communication and control across machines or machine, human, and organizations. The scope includes such areas as computational intelligence, computer vision, neural networks, genetic algorithms, machine learning, fuzzy systems, cognitive systems, decision making, and robotics, to the extent that they contribute to the theme of cybernetics or demonstrate an application of cybernetics principles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信