冷冻储存过程中马铃薯泥的颜色动态、色素和抗氧化能力:使用CIELAB颜色空间和机器学习模型的相关性研究。

IF 3.1 2区 农林科学 Q2 CHEMISTRY, APPLIED
José Antonio Sánchez-Franco, Nelly Del Socorro Cruz-Cansino, Quinatzin Yadira Zafra-Rojas, Daniel Ayala-Niño, Alexis Ayala-Niño
{"title":"冷冻储存过程中马铃薯泥的颜色动态、色素和抗氧化能力:使用CIELAB颜色空间和机器学习模型的相关性研究。","authors":"José Antonio Sánchez-Franco, Nelly Del Socorro Cruz-Cansino, Quinatzin Yadira Zafra-Rojas, Daniel Ayala-Niño, Alexis Ayala-Niño","doi":"10.1007/s11130-025-01388-7","DOIUrl":null,"url":null,"abstract":"<p><p>The accurate prediction of bioactive compounds and antioxidant activity in food matrices is critical for optimizing nutritional quality and industrial applications. This study compares the performance of multiple linear regression (MLR) and artificial neural networks (ANN) in predicting antioxidant activity (DPPH, ABTS), total carotenoids, and anthocyanins in mamey pulp, using color variables (CIELab) as predictors. Our results demonstrate that ANN models consistently outperform MLR, achieving lower mean squared error (MSE) and mean absolute error (MAE), alongside higher coefficients of determination (R<sup>2</sup>). For instance, ANN improved R<sup>2</sup> values from 0.54 to 0.78 for DPPH, from 0.70 to 0.92 for ABTS, and from 0.45 to 0.87 for total carotenoids. These results highlight the superior ability of ANN to capture nonlinear relationships in complex food systems. Furthermore, the integration of ANN with image analysis techniques offers a promising approach for nondestructive quality control during storage and processing. This research underscores the potential of ANN as a powerful tool for screening bioactive compounds and optimizing functional food development, contributing to advancements in food science and technology.</p>","PeriodicalId":20092,"journal":{"name":"Plant Foods for Human Nutrition","volume":"80 3","pages":"147"},"PeriodicalIF":3.1000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Color Dynamics, Pigments and Antioxidant Capacity in Pouteria sapota Puree During Frozen Storage: A Correlation Study Using CIELAB Color Space and Machine Learning Models.\",\"authors\":\"José Antonio Sánchez-Franco, Nelly Del Socorro Cruz-Cansino, Quinatzin Yadira Zafra-Rojas, Daniel Ayala-Niño, Alexis Ayala-Niño\",\"doi\":\"10.1007/s11130-025-01388-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The accurate prediction of bioactive compounds and antioxidant activity in food matrices is critical for optimizing nutritional quality and industrial applications. This study compares the performance of multiple linear regression (MLR) and artificial neural networks (ANN) in predicting antioxidant activity (DPPH, ABTS), total carotenoids, and anthocyanins in mamey pulp, using color variables (CIELab) as predictors. Our results demonstrate that ANN models consistently outperform MLR, achieving lower mean squared error (MSE) and mean absolute error (MAE), alongside higher coefficients of determination (R<sup>2</sup>). For instance, ANN improved R<sup>2</sup> values from 0.54 to 0.78 for DPPH, from 0.70 to 0.92 for ABTS, and from 0.45 to 0.87 for total carotenoids. These results highlight the superior ability of ANN to capture nonlinear relationships in complex food systems. Furthermore, the integration of ANN with image analysis techniques offers a promising approach for nondestructive quality control during storage and processing. This research underscores the potential of ANN as a powerful tool for screening bioactive compounds and optimizing functional food development, contributing to advancements in food science and technology.</p>\",\"PeriodicalId\":20092,\"journal\":{\"name\":\"Plant Foods for Human Nutrition\",\"volume\":\"80 3\",\"pages\":\"147\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Foods for Human Nutrition\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s11130-025-01388-7\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Foods for Human Nutrition","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11130-025-01388-7","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

准确预测食品基质中的生物活性化合物和抗氧化活性对于优化营养质量和工业应用至关重要。本研究以颜色变量(CIELab)作为预测指标,比较了多元线性回归(MLR)和人工神经网络(ANN)在预测果肉抗氧化活性(DPPH、ABTS)、总类胡萝卜素和花青素方面的性能。我们的研究结果表明,ANN模型始终优于MLR,实现了更低的均方误差(MSE)和平均绝对误差(MAE),以及更高的决定系数(R2)。例如,人工神经网络使DPPH的R2值从0.54提高到0.78,ABTS的R2值从0.70提高到0.92,总类胡萝卜素的R2值从0.45提高到0.87。这些结果突出了人工神经网络在复杂食物系统中捕获非线性关系的卓越能力。此外,人工神经网络与图像分析技术的集成为存储和处理过程中的无损质量控制提供了一种有前途的方法。这项研究强调了人工神经网络作为筛选生物活性化合物和优化功能食品开发的有力工具的潜力,为食品科学技术的进步做出了贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Color Dynamics, Pigments and Antioxidant Capacity in Pouteria sapota Puree During Frozen Storage: A Correlation Study Using CIELAB Color Space and Machine Learning Models.

The accurate prediction of bioactive compounds and antioxidant activity in food matrices is critical for optimizing nutritional quality and industrial applications. This study compares the performance of multiple linear regression (MLR) and artificial neural networks (ANN) in predicting antioxidant activity (DPPH, ABTS), total carotenoids, and anthocyanins in mamey pulp, using color variables (CIELab) as predictors. Our results demonstrate that ANN models consistently outperform MLR, achieving lower mean squared error (MSE) and mean absolute error (MAE), alongside higher coefficients of determination (R2). For instance, ANN improved R2 values from 0.54 to 0.78 for DPPH, from 0.70 to 0.92 for ABTS, and from 0.45 to 0.87 for total carotenoids. These results highlight the superior ability of ANN to capture nonlinear relationships in complex food systems. Furthermore, the integration of ANN with image analysis techniques offers a promising approach for nondestructive quality control during storage and processing. This research underscores the potential of ANN as a powerful tool for screening bioactive compounds and optimizing functional food development, contributing to advancements in food science and technology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant Foods for Human Nutrition
Plant Foods for Human Nutrition 工程技术-食品科技
CiteScore
6.80
自引率
7.50%
发文量
89
审稿时长
12-24 weeks
期刊介绍: Plant Foods for Human Nutrition (previously Qualitas Plantarum) is an international journal that publishes reports of original research and critical reviews concerned with the improvement and evaluation of the nutritional quality of plant foods for humans, as they are influenced by: - Biotechnology (all fields, including molecular biology and genetic engineering) - Food science and technology - Functional, nutraceutical or pharma foods - Other nutrients and non-nutrients inherent in plant foods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信