Justin R McCurdy, Daniel Zlatopolsky, Ria Doshi, Jing Xu, Deborah A Barany
{"title":"定时拦截时的皮质脊髓兴奋性取决于运动目标的速度。","authors":"Justin R McCurdy, Daniel Zlatopolsky, Ria Doshi, Jing Xu, Deborah A Barany","doi":"10.1152/jn.00153.2025","DOIUrl":null,"url":null,"abstract":"<p><p>Successfully intercepting a moving object requires precisely timing the optimal moment to act by integrating information about the target's visual motion properties. Neurophysiological evidence indicates that activity in the primary motor cortex (M1) during interception preparation is sensitive to both the target's kinematic features and motor planning. However, how visual motion signals modulate M1 during timed interception remains unclear. In the present study, we applied single-pulse transcranial magnetic stimulation (TMS) over M1 to examine how a target's kinematics influence corticospinal excitability during interception preparation. Participants were instructed to abduct their right index finger to intercept a target moving horizontally at a constant speed toward a fixed interception zone. Target speed (Fast or Slow) and travel distance (Far or Close) were manipulated while controlling motion duration across conditions. Motor-evoked potentials (MEPs) were elicited at five latencies before target arrival at the interception zone. Consistent with previous behavioral findings, movement initiation occurred earlier for faster targets and was delayed when TMS was applied closer to the target's arrival. Though MEPs were generally suppressed relative to baseline at earlier timepoints and facilitated closer to movement initiation, we observed that target speed-but not distance-influenced the time course of MEP modulation. When adjusting for movement initiation times, there was an overall reduced suppression and increased facilitation for faster-moving targets, possibly reflecting a heightened urgency to move. These results suggest M1 activity during interception preparation reflects internal estimates of target motion, which may serve to optimize interception timing and performance.</p>","PeriodicalId":16563,"journal":{"name":"Journal of neurophysiology","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Corticospinal excitability during timed interception depends on the speed of the moving target.\",\"authors\":\"Justin R McCurdy, Daniel Zlatopolsky, Ria Doshi, Jing Xu, Deborah A Barany\",\"doi\":\"10.1152/jn.00153.2025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Successfully intercepting a moving object requires precisely timing the optimal moment to act by integrating information about the target's visual motion properties. Neurophysiological evidence indicates that activity in the primary motor cortex (M1) during interception preparation is sensitive to both the target's kinematic features and motor planning. However, how visual motion signals modulate M1 during timed interception remains unclear. In the present study, we applied single-pulse transcranial magnetic stimulation (TMS) over M1 to examine how a target's kinematics influence corticospinal excitability during interception preparation. Participants were instructed to abduct their right index finger to intercept a target moving horizontally at a constant speed toward a fixed interception zone. Target speed (Fast or Slow) and travel distance (Far or Close) were manipulated while controlling motion duration across conditions. Motor-evoked potentials (MEPs) were elicited at five latencies before target arrival at the interception zone. Consistent with previous behavioral findings, movement initiation occurred earlier for faster targets and was delayed when TMS was applied closer to the target's arrival. Though MEPs were generally suppressed relative to baseline at earlier timepoints and facilitated closer to movement initiation, we observed that target speed-but not distance-influenced the time course of MEP modulation. When adjusting for movement initiation times, there was an overall reduced suppression and increased facilitation for faster-moving targets, possibly reflecting a heightened urgency to move. These results suggest M1 activity during interception preparation reflects internal estimates of target motion, which may serve to optimize interception timing and performance.</p>\",\"PeriodicalId\":16563,\"journal\":{\"name\":\"Journal of neurophysiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of neurophysiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1152/jn.00153.2025\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neurophysiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/jn.00153.2025","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Corticospinal excitability during timed interception depends on the speed of the moving target.
Successfully intercepting a moving object requires precisely timing the optimal moment to act by integrating information about the target's visual motion properties. Neurophysiological evidence indicates that activity in the primary motor cortex (M1) during interception preparation is sensitive to both the target's kinematic features and motor planning. However, how visual motion signals modulate M1 during timed interception remains unclear. In the present study, we applied single-pulse transcranial magnetic stimulation (TMS) over M1 to examine how a target's kinematics influence corticospinal excitability during interception preparation. Participants were instructed to abduct their right index finger to intercept a target moving horizontally at a constant speed toward a fixed interception zone. Target speed (Fast or Slow) and travel distance (Far or Close) were manipulated while controlling motion duration across conditions. Motor-evoked potentials (MEPs) were elicited at five latencies before target arrival at the interception zone. Consistent with previous behavioral findings, movement initiation occurred earlier for faster targets and was delayed when TMS was applied closer to the target's arrival. Though MEPs were generally suppressed relative to baseline at earlier timepoints and facilitated closer to movement initiation, we observed that target speed-but not distance-influenced the time course of MEP modulation. When adjusting for movement initiation times, there was an overall reduced suppression and increased facilitation for faster-moving targets, possibly reflecting a heightened urgency to move. These results suggest M1 activity during interception preparation reflects internal estimates of target motion, which may serve to optimize interception timing and performance.
期刊介绍:
The Journal of Neurophysiology publishes original articles on the function of the nervous system. All levels of function are included, from the membrane and cell to systems and behavior. Experimental approaches include molecular neurobiology, cell culture and slice preparations, membrane physiology, developmental neurobiology, functional neuroanatomy, neurochemistry, neuropharmacology, systems electrophysiology, imaging and mapping techniques, and behavioral analysis. Experimental preparations may be invertebrate or vertebrate species, including humans. Theoretical studies are acceptable if they are tied closely to the interpretation of experimental data and elucidate principles of broad interest.