{"title":"三个矩形矩阵Böttcher-Wenzel不等式的推广","authors":"Motoyuki Nobori","doi":"10.1016/j.laa.2025.07.005","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>m</mi><mo>,</mo><mi>n</mi></math></span> be positive integers. For all <span><math><mi>m</mi><mo>×</mo><mi>n</mi></math></span> complex matrices <span><math><mi>A</mi><mo>,</mo><mi>C</mi></math></span> and an <span><math><mi>n</mi><mo>×</mo><mi>m</mi></math></span> matrix <em>B</em>, we define a generalized commutator as <span><math><mi>A</mi><mi>B</mi><mi>C</mi><mo>−</mo><mi>C</mi><mi>B</mi><mi>A</mi></math></span>. We estimate the Frobenius norm of it, and finally get the inequality, which is a generalization of the Böttcher-Wenzel inequality. If <span><math><mi>n</mi><mo>=</mo><mn>1</mn></math></span> or <span><math><mi>m</mi><mo>=</mo><mn>1</mn></math></span>, then the Frobenius norm of <span><math><mi>A</mi><mi>B</mi><mi>C</mi><mo>−</mo><mi>C</mi><mi>B</mi><mi>A</mi></math></span> can be estimated with a tighter upper bound.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"725 ","pages":"Pages 135-144"},"PeriodicalIF":1.1000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A generalization of the Böttcher-Wenzel inequality for three rectangular matrices\",\"authors\":\"Motoyuki Nobori\",\"doi\":\"10.1016/j.laa.2025.07.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mi>m</mi><mo>,</mo><mi>n</mi></math></span> be positive integers. For all <span><math><mi>m</mi><mo>×</mo><mi>n</mi></math></span> complex matrices <span><math><mi>A</mi><mo>,</mo><mi>C</mi></math></span> and an <span><math><mi>n</mi><mo>×</mo><mi>m</mi></math></span> matrix <em>B</em>, we define a generalized commutator as <span><math><mi>A</mi><mi>B</mi><mi>C</mi><mo>−</mo><mi>C</mi><mi>B</mi><mi>A</mi></math></span>. We estimate the Frobenius norm of it, and finally get the inequality, which is a generalization of the Böttcher-Wenzel inequality. If <span><math><mi>n</mi><mo>=</mo><mn>1</mn></math></span> or <span><math><mi>m</mi><mo>=</mo><mn>1</mn></math></span>, then the Frobenius norm of <span><math><mi>A</mi><mi>B</mi><mi>C</mi><mo>−</mo><mi>C</mi><mi>B</mi><mi>A</mi></math></span> can be estimated with a tighter upper bound.</div></div>\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":\"725 \",\"pages\":\"Pages 135-144\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0024379525002897\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379525002897","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
A generalization of the Böttcher-Wenzel inequality for three rectangular matrices
Let be positive integers. For all complex matrices and an matrix B, we define a generalized commutator as . We estimate the Frobenius norm of it, and finally get the inequality, which is a generalization of the Böttcher-Wenzel inequality. If or , then the Frobenius norm of can be estimated with a tighter upper bound.
期刊介绍:
Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.