具有规定谱数据的实偏对称和周期偏对称三对角矩阵

IF 1 3区 数学 Q1 MATHEMATICS
Yu Zeng , Wei-Ru Xu , Natália Bebiano
{"title":"具有规定谱数据的实偏对称和周期偏对称三对角矩阵","authors":"Yu Zeng ,&nbsp;Wei-Ru Xu ,&nbsp;Natália Bebiano","doi":"10.1016/j.laa.2025.07.009","DOIUrl":null,"url":null,"abstract":"<div><div>Skew-symmetric matrices have various applications in physics, one of which is in the gyroscopic system. In this paper, we retrieve a unique real skew-symmetric tridiagonal matrix from the maximal and minimal imaginary parts of the eigenvalues of all its leading principal submatrices. For <em>n</em> even, we then reconstruct an <em>n</em>-by-<em>n</em> real periodic skew-symmetric tridiagonal matrix from the imaginary parts of all its eigenvalues, and those of the leading principal submatrix of order <span><math><mi>n</mi><mo>−</mo><mn>1</mn></math></span>, and a given positive number. The necessary and sufficient conditions for the existence of such matrices are given, and we show that the total number of possible <em>n</em>-by-<em>n</em> periodic skew-symmetric tridiagonal matrices is at most <span><math><msup><mrow><mn>2</mn></mrow><mrow><mo>⌊</mo><mfrac><mrow><mi>n</mi><mo>−</mo><mi>s</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo></mrow></msup></math></span>, where <em>s</em> is the number of common elements in the two prescribed spectra. The proofs of the obtained results provide algorithmic procedures for the aimed reconstructions, which are supported by some illustrative numerical experiments.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"725 ","pages":"Pages 198-222"},"PeriodicalIF":1.0000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real skew-symmetric and periodic skew-symmetric tridiagonal matrices with prescribed spectral data\",\"authors\":\"Yu Zeng ,&nbsp;Wei-Ru Xu ,&nbsp;Natália Bebiano\",\"doi\":\"10.1016/j.laa.2025.07.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Skew-symmetric matrices have various applications in physics, one of which is in the gyroscopic system. In this paper, we retrieve a unique real skew-symmetric tridiagonal matrix from the maximal and minimal imaginary parts of the eigenvalues of all its leading principal submatrices. For <em>n</em> even, we then reconstruct an <em>n</em>-by-<em>n</em> real periodic skew-symmetric tridiagonal matrix from the imaginary parts of all its eigenvalues, and those of the leading principal submatrix of order <span><math><mi>n</mi><mo>−</mo><mn>1</mn></math></span>, and a given positive number. The necessary and sufficient conditions for the existence of such matrices are given, and we show that the total number of possible <em>n</em>-by-<em>n</em> periodic skew-symmetric tridiagonal matrices is at most <span><math><msup><mrow><mn>2</mn></mrow><mrow><mo>⌊</mo><mfrac><mrow><mi>n</mi><mo>−</mo><mi>s</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo></mrow></msup></math></span>, where <em>s</em> is the number of common elements in the two prescribed spectra. The proofs of the obtained results provide algorithmic procedures for the aimed reconstructions, which are supported by some illustrative numerical experiments.</div></div>\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":\"725 \",\"pages\":\"Pages 198-222\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0024379525002939\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379525002939","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

偏对称矩阵在物理学中有各种各样的应用,其中之一就是陀螺仪系统。本文从一个唯一的实斜对称三对角矩阵的所有主子矩阵的特征值的极大虚部和极小虚部中检索到一个唯一的实斜对称三对角矩阵。对于n偶,我们用它的所有特征值的虚部,以及n−1阶的主子矩阵的虚部,和一个给定的正数,重构了一个n × n的实周期斜对称三对角矩阵。给出了这类矩阵存在的充分必要条件,并证明了可能的n × n周期斜对称三对角矩阵的总数最多为2⌊n−s2⌋,其中s为两个规定谱中的公共元素数。所得结果的证明为目标重构提供了算法步骤,并得到了一些说明性数值实验的支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real skew-symmetric and periodic skew-symmetric tridiagonal matrices with prescribed spectral data
Skew-symmetric matrices have various applications in physics, one of which is in the gyroscopic system. In this paper, we retrieve a unique real skew-symmetric tridiagonal matrix from the maximal and minimal imaginary parts of the eigenvalues of all its leading principal submatrices. For n even, we then reconstruct an n-by-n real periodic skew-symmetric tridiagonal matrix from the imaginary parts of all its eigenvalues, and those of the leading principal submatrix of order n1, and a given positive number. The necessary and sufficient conditions for the existence of such matrices are given, and we show that the total number of possible n-by-n periodic skew-symmetric tridiagonal matrices is at most 2ns2, where s is the number of common elements in the two prescribed spectra. The proofs of the obtained results provide algorithmic procedures for the aimed reconstructions, which are supported by some illustrative numerical experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信